An experimental approach to discrete dynamical systems with Mathematica
Main Article Content
Abstract
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Bamsley, M. (1988). Fractals everywhere. Second Edition, Academic Press.
Beardon, A. F. (1991). Iteration of rational functions. First Edition, Springer-Verlag, New York.
Chossat P. and Golubitsky M. (1998). “Symmetry-increasing bifurcation of chaotic Attractors”. Physica D 32. P. 423.
Devaney, R. L. (1988). Fractal patterns arising in chaotic dynamical systems. The science of fractal images, edited by H. O. Peitgen and D. Saupe, Springer-Verlag, New York.
Devaney, R. L. (1989). An introduction to chaotic dynamical systems. Second Edition, Addison-Wesley.
Devaney, R. L. (1992). A first course in chaotic dynamical systems. First Edition, Addison-Wesley, Boston. de Melo, W., and van Strien, S. (1991). One-dimensional dynamics. Springer-Verlag, Berlin Heidelberg, New York.
Gabisch, G. and Lorenz, H.W. (1989). Business cycle theory. Second ed. Springer-Verlag, Berlin Heidelberg, New York.
Guckenheimer, J. and Holmes, P. (1983). Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer-Verlag, New York.
Gumowski I. and Mira C. (1980). “Recurrences and discrete dynamic system, Lecture notes in Mathematics.” zamm. Journal of applied Mathematics and Mechanics, Springer-Verlag.
Holmgren, R. A. (1994). A first course in discrete dynamical systems. First edition, Springer-Verlag, New York.
Looss, G. (1979). Bifurcation of maps and applications. North-Holland Publishing Company, Amsterdam.
Looss, G. and Joseph, D.D. (1980). Elementary stability and bifurcation theory. Springer-Verlag, New York.
Keen, L. (1989). “Julia Sets.” Proceedings of Symposia in Applied Mathematics, vol. 39, p. 57.
Maeder, Roman E. (1996). Programming in Mathematica. Third edition, Addison-Wesley.
Peitgen, H. O., Jurgens, H. and Saupe, D. (1992). Chaos and fractals, New frontiers of science, Springer-verlag.
Samuelson, P. A. (1939). “Interactions between the multiplier analysis and the principle of acceleration”, The Review of Economics and Statistics, vol. 21, núm. 2, mayo, 1939, Pp. 75-78.
Sharkovsky, A.N., Kolyada, S.F., Sivak, A.G. and Fedorenko, V.V (1997). Dynamics of one-dimensional maps, Kluer Academic Publishers, London.
Wiggins, S. (1988). Global bifurcations and chaos, analytical methods, Springer Verlag, New York.