Sulfidación a 600 °C por 24 horas en superaleación Haynes 230 para uso aeronáutico
Resumen
En muchos procesos industriales, la combustión se relaciona con combustibles como la turbosina, que contienen baja concentración de contaminantes, entre ellos el azufre. En los turborreactores de los aviones en ocasiones se utiliza el exceso de aire para asegurar una combustión completa del combustible dando como resultado un producto de gases en el cual se encuentra el dióxido de azufre (SO2). Aunque las aleaciones en estos ambientes se corroen debido al oxígeno, también da lugar a otros productos debido al producto de la combustión en conjunto con ciertos elementos en la aleación que, separados o en conjunto, pueden reaccionar y aumentar la velocidad de corrosión en forma de sulfidación, que es la reacción de un elemento en contacto con azufre [2].Descargas
Citas
Hunecke, K. “Jet engines: Fundamentals of theory, design and operation” Motorbooks international (2003)
Royce, R. “The jet engine” Rolls-Royce plc (1986)
Khanna A. “High temperature oxidation and corrosion” ASM International (2000)
Roger, C. “The superalloys: Fundamentals and applications” University of Cambridge (2006)
Lai, G. “High temperature corrosion and materials applications” ASM International (2007)
Rizhang, Z. “A stury of the mechanism of internal sulfidation- internal oxidation during hot corrosion of Ni-Base alloys” Oxidation of metals 27 (1987) 253-266
Douglass, D. “Sulfidation Behavior of Ni-Cr-Mo Alloys at 700°C” Oxidation of Metals 22 (1984)
Chen, M. “Effect of some ternary additions on the sulfidation of Ni-Mo Alloys” Oxidation of Metals 33 (1990)
Ohla, K. “The effect of Preoxidation on the Sulfidation of Ni-20Cr (2-5) Al Alloys” Oxidation of Metals 36 (1991)
Lee, W. “Oxidation and sulfidation of Ni3Al” Materials Chemistry and Physics 76 (2002)
Danielewski M. “Oxidation- sulfidation behavior of Iron- Chromium- Nickel alloys” Oxidation of 2metals 12 (1977)
Sheybany, S. “The effect of peroxidation of some Ni, Fe and Co-base alloys on subsequent sulfidation at 982°C in sulfur vapor”
Oxidation of Metals 30 (1988)
Young, D. “Sulfidation behavior of Ni-Cr-Mo alloys” Oxidation of metals 7 (1972)
Mrowec, S. “Transport properties of sulfide scales and sulfidation of metals and alloys” Oxidation of Metals 23 (]1985)
Vineberg E. “Effect of Yttrium of the sulfidatio behavior of Ni-Cr-Al Alloys at 700°C” Oxidation of metals 25 (1986)
Spengler, C. “Effect of sequential sulfidation and oxidation on the propagation of sulfur in an 85-Ni 15-Cr alloy” Metallurgical transactions (1972)
Cheng, F. “Sulfidation Mechanism of Ni-20 Cr and Ni-13.5Co-20Cr alloys at 873 K under low sulfur pressure in H2S-H2 atmospheres” Oxidation of metals 54 (2000)
Microstructure of Nanocrystalline Ni-20Cr-4Al coatilng” Oxidation of metals 73 (2010)
Haynes International “Haynes 230 Alloy” USA, extraído el 03/02/2015, de: http://www.haynesintl.com/pdf/h3000.pdf
Jian L, “Oxidation kinetics of Haynes 230 alloy in air at temperatures between 650 and 850°C”, Journal of Power Sources 159 (2006)
Pop, D. “Surface segregation in Haynes 230 alloy” Applied Surface Science 253 (2006)
Dongmei, L. “Isothermal oxidation behavior of Haynes 230 alloy in air at 1100°C”, Rare Materials and Engineering 37 (2008)
Hsiao-Ming, T. “Incipient oxidation kinetics and residual stress of the oxide scale grown on Haynes 230 at high temperatures” Materials Science and Engineering 538 (2012)
Tylczak J. “Erosion- corrosion of iron and nickel alloys at elevated temperature in a combustion gas environment” Wear 302 (2013)
Fen-Ren, C. “Cyclic oxidation of Haynes 230” Journal of materials science 27 (1992)
Fen- Ren, C. “Cyclic hot corrosion of Haynes 230 alloy”, Journal of materials science 27 (1992)
Liu, C. "Initial hot corrosion of Haynes 230”, Journal of materials 19 (1987)
Spengler, C. “Effect of sequential sulfidation and oxidation on the propagation of sulfur in an 85-Ni 15-Cr alloy” Metallurgical transactions (1972)
Gurrappa, “Sulfidation characteristics of an advanced superalloy and comparison with other superalloys intended for gas turbine use”, Metallurgical and materials transactions 44 (2013),
Roger, C. “The superalloys: Fundamentals and applications” University of Cambridge (2006)
Hocking, P. “Sulfidation-Oxidation Behavior of alloy 800H in SO2-O2 and H2-H2S-CO-CO2 atmosphere”, Oxidation of Metals 41 (1994)
Groover, M. P. “Fundamentos de manufactura moderna” Prentice Hall (2005)
Donachie M. “Superalloys, a technical guide”, ASM International (2002)
Kalpakjian “Manufactura: Ingeniería y tecnología” Prentice Hall (2002)
Roger, C. “The superalloys: Fundamentals and applications” University of Cambridge (2006)
Campbell, F. “Manufacturing technology for aerospace structural materials” Elsevier (2006)
Smallman R. “Physical Metallurgy and Advanced Materials “, Elsevier (2007)
Cemal, M. “Allvac718 plus superalloy for aircraft engine applications” InTech (2012)
UNLP “Aceros y superaleaciones termoresistentes” Facultad de Ingeniería UNLP (2010)
Bilurbina, L. “Corrosión y protección” Editorial UPC (2003)
Lai, G. “High temperature corrosion and materials applications” ASM International (2007)
Callister, W. “Introducción a la ciencia e ingeniería de los materiales 2”, Editorial Reverté (2007)
Sierra I. “Análisis Instrumental” Netbiblo (2010)
Laitinen, H. “Análisis Químico” Reberté (1982)
Hernández H. “Mecánica de fractura y análisis de falla” Universidad Nacional de Colombia (2002)
Vázquez, G. “Introducción a la microscopía electronica aplicada a las ciencias biológicas” UNAM (2000)
ASTM “ E1877: Standard practice for calculating thermal endurance of materials from thermogravimetric decomposition data” ASTM International (2005)
ASTM “E1641: Standard test method for decomposition kinetics by thermogravimetry” ASTM International (2006)
Yongjiang, X. “Kinetics of isothermal and non-isothermal pyrolysis of oil shale” Oil Shale 28 (2011)
TA Instruments “A review of DSC kinetics methods” TA Instruments 73 (2010)
Chen, F. “The oxidation of heavy oil: Thermogravimetric analysis and non-isothermal kinetics using the distributed activation energy model” Fuel processing technology 119 (2014)
ASTM “ E407: Standard practice for microetching metals and alloys” ASTM International (2006)
Hsiao-Ming, T. “Incipient corrosion behavior of Haynes 230 under a controlled reducing atmosphere at hight temperature”, Journal of Nuclear Materials 427 (2012)
Vineberg E. “Effect of Yttrium of the sulfidatio behavior of Ni-Cr-Al Alloys at 700°C” Oxidation of metals 25 (1986)
Garret, P. “Creep deformation and mechanism in Haynes 230 at 800°C and 900°C”, Journal of Nuclear Materials 443 (2013)
Garret P. “High temperature fatigue crack growth of Haynes 230” Materials characterization 75 (2015)
Prescott, R. “Investigations of the degradation of high temperature alloys in a potentially oxidizing-chloridizing gas mixture” Oxidation of metals 3 (1989)
Coyle, R. “Exploratory corrosion tests on alloys in molten salts at 900°C” Materials for energy system 7 (1986)
Chevuru, N. “Cyclic Oxidation Behavior and Microstructure of Nanocrystalline Ni-20Cr-4Al coatilng” Oxidation of metals 73 (2010)
Meyer, F. “The thermal fatigue behavior of the combustor alloys IN 617 and Haynes 230 before and after welding” Metallurgical and materials transactions 30 (1999)
Kawahara, Y. “Application of high temperature corrosion-resistant materials and coatings under severe corrosive environments in waste-to-energy boilers” Journey of Thermal Spray Technology 16 (2007)
Olivares, R. “Thermogravimetric study of oxidation- resistant alloys for high temperature solar receivers” Journal of Materials 65 (2013)
Atkins, “Principios de Química” Editoria Médica Panamericána (2012)
Billmeyer, F “Ciencia de los polímeros” Reverté (2004)
Peel, C. “Design Requirements for Aerospace Structural Materials” Prentice Hall (1995)
ASTM. “STP 761: Design of Fatigue and Fracture Resistant Structures” ASTM International (1982)
Barrington, N. “Aerospace Materials and Manufacturing Processes at the Millenium” Institute of Physics Publishing (2002)
Cotton, J. “Titanium alloys on the F-22 Fighter Aircraft” Advanced Materials & Processes (2002)
William J. “Progress in structural materials for aerospace systems” Acta Materialia 51 (2003)
Publicado
Cómo citar
Número
Sección
Licencia
Todos los contenidos de CULCYT se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento-No Comercial 4.0 Internacional” (CC-BY-NC). Puede consultar desde aquí la versión informativa de la licencia.
Los autores/as que soliciten publicar en esta revista, aceptan los términos siguientes: a) los/las autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra; y b) se permite y recomienda a los/las autores/as agregar enlaces de sus artículos en CULCYT en la página web de su institución o en la personal, debido a que ello puede generar intercambios interesantes y aumentar las citas de su obra publicada.