Mechatronic Rehabilitation System for Upper Limbs

Authors

DOI:

https://doi.org/10.20983/culcyt.2025.1.2.1

Keywords:

continuous passive motion, upper limb rehabilitation machine, rehabilitation robot, rehabilitation robotics

Abstract

Currently there is great interest in the development of machines that meet the demand to rehabilitate the upper and lower extremities, due to injuries caused by strokes, traumatic incidents or accidents, neuromuscular diseases, which are increasing day by day. The objective of this work is to present the kinematic analysis of an upper limb rehabilitation machine for patients who suffered a stroke. The rehabilitation machine has 3 degrees of freedom (DOF), uses a flexible cable, and can provide shoulder movements: flexion-extension, external rotation, abduction; and elbow flexion movements, among others. The kinematic analysis of some basic movements is presented by means of vector loop analysis. In addition, the simulation results in the MSC Adams environment show that the rehabilitation machine can provide smooth passive rehabilitation movements.

Downloads

Download data is not yet available.

Author Biographies

Andrés Blanco Ortega, Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET)

Profesor-investigador, Departamento de Ingeniería Mecánica, Tecnológico Nacional de México / Centro Nacional de Investigación y Desarrollo Tecnológico, Cuernavaca, Morelos, México

Carlos Manuel Lara Barrios, Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET)

Departamento de Ingeniería Mecánica, Tecnológico Nacional de México / Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET), Cuernavaca, Morelos, México

Milton Uriel Vargas Ortiz, Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET)

Departamento de Computación, Tecnológico Nacional de México / Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET), Cuernavaca, Morelos, México

Andrea Magadán Salazar, Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET)

Profesora-investigadora, Departamento de Computación, Tecnológico Nacional de México / Centro Nacional de Investigación y Desarrollo Tecnológico, Cuernavaca, Morelos, México

Manuel de Jesús Palacios Gallegos, Universidad Politécnica de Chiapas

Profesor-investigador, Ingeniería en Energía y Maestría en Energías Renovables, Universidad Politécnica de Chiapas, Tuxtla Gutiérrez, Chiapas, México

Jonathan Villanueva Tavira, Universidad Politécnica de Chiapas

Ingeniería en Energía y Maestría en Energías Renovables, Universidad Politécnica de Chiapas, Tuxtla Gutiérrez, Chiapas, México

References

N. Rehmat, J. Zuo, W. Meng, Q. Liu, S. Q. Xie and H. Liang, “Upper limb rehabilitation using robotic exoskeleton systems: a systematic review,” Int J Intell Robot Appl, vol. 2, pp. 283–295. 2018, doi: 10.1007/s41315-018-0064-8.

H. Shing Lo and S. Quan Xie, “Exoskeleton robots for upper-limb rehabilitation: State of the art and future prospects,” Med. Eng. Phys., vol. 34, no. 3, pp. 261–268, 2012, doi: 10.1016/j.medengphy.2011.10.004.

A. S. Niyetkaliyev, S. Hussain, M. H. Ghayesh and G. Alici, “Review on Design and Control Aspects of Robotic Shoulder Rehabilitation Orthoses,” in IEEE Transactions on Human-Machine Systems, vol. 47, no. 6, pp. 1134–1145, Dec. 2017, doi: 10.1109/THMS.2017.2700634.

R. A. R. C. Gopura, K. Kiguchi and D. S. V. Bandara, “A brief review on upper extremity robotic exoskeleton systems,” 2011 6th International Conference on Industrial and Information Systems, Kandy, Sri Lanka, pp. 346–351, 2011, doi: 10.1109/ICIINFS.2011.6038092.

Y. Huang, Q. Yang, Y. Chen and R. Song, “Assessment of Motor Control during Three-Dimensional Movements Tracking with Position-Varying Gravity Compensation,” Front. Neurosci., vol. 11, 2017, doi: 10.3389/fnins.2017.00253.

J. Niu, Q. Yang, X. Wang and R. Song, “Sliding Mode Tracking Control of a Wire-Driven Upper-Limb Rehabilitation Robot with Nonlinear Disturbance Observer,” Front Neurol., vol. 8, 2017, doi: 10.3389/fneur.2017.00646.

R. Beer, D. Mayhew, C. Bredfeldt and B. Bachrach, “Technical evaluation of the MACARM: A cable robot for upper limb neurorehabilitation,” 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Scottsdale, AZ, USA, pp. 942–947, 2008, doi: 10.1109/BIOROB.2008.4762880.

X. Li, Q. Yang and R. Song, “Performance-Based Hybrid Control of a Cable-Driven Upper-Limb Rehabilitation Robot,” in IIEEE Trans Biomed Eng, vol. 68, no. 4, pp. 1351–1359, April 2021, doi: 10.1109/TBME.2020.3027823.

Y. Zou, X. Wu, B. Zhang, Q. Zhang, A. Zhang and T. Qin. “Stiffness Analysis of Parallel Cable-Driven Upper Limb Rehabilitation Robot,” Micromachines, vol. 13, no. 2, 2022, doi: 10.3390/mi13020253.

K. Shi, A. Song, Y. Li and C. Wu, “Cable-driven Wearable Upper Limb Rehabilitation Robot,” 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), Kuala Lumpur, Malaysia, pp. 2434–2438, 2018, doi: 10.1109/ROBIO.2018.8665179.

Z. Li et al., “Mechatronics design and testing of a cable-driven upper limb rehabilitation exoskeleton with variable stiffness,” Rev. Sci. Instrum., vol. 92, no. 2, 024101, February 2021, doi: 10.1063/5.0037317.

A. Magadán, A. Blanco, José A. Santana, F. A. Gómez and E. Antúnez, “Diseño y control de un rehabilitador de hombro,” Pistas Educativas, no. 130, pp. 1764–1778, November 2018.

M. T. Angulo, A. Álvarez and Y. Fuentes, “Biomecánica Clínica. Biomecánica de la Extremidad Superior. Exploración del Codo,” REDUCA, vol. 3, no. 4, pp. 82–103, 2011.

Downloads

Published

2025-01-27

How to Cite

[1]
A. Blanco Ortega, C. M. Lara Barrios, M. U. Vargas Ortiz, A. Magadán Salazar, M. de J. Palacios Gallegos, and J. Villanueva Tavira, “Mechatronic Rehabilitation System for Upper Limbs”, Cult. Científ. y Tecnol., vol. 22, no. 1, pp. 5–12, Jan. 2025.