Reflective-Refractive Static Solar Concentrator: Construction and Experimental Evaluation

Authors

DOI:

https://doi.org/10.20983/culcyt.2024.2.2.1

Keywords:

refractivo-reflectivo, concentrador de embudo, captación de energía solar, radiación solar

Abstract

The results of an experimental study of a refractive-reflective static solar concentrator designed to increase the solar energy collection time compared to conventional static solar concentrators are presented. For this study, the solar concentrator developed by Luque-Zúñiga et al. in 2020, which combines a prism and a metallic conical concentrator, was redesigned. This new version of the solar concentrator was built on a conventional lathe using low-carbon steel and applied a grinding and polishing process to achieve a mirror-like finish. The study was conducted under controlled laboratory conditions. A light intensity measurement system based on an open-source microcontroller supported by the Arduino ATmega328P circuit, a photodiode, and a halogen spotlight with position adjustment to emulate sunlight was used. The results obtained are shown in a heat map and indicate the efficiency of the concentrator. This study contributes to the design and implementation of efficient static solar concentrating systems with renewable energy-based applications.

Downloads

Download data is not yet available.

Author Biographies

Arturo Cordero-Guillén, Instituto Politécnico Nacional

Escuela Superior de Ingeniería Mecánica y Eléctrica Culhuacán, Sección de Estudios de Posgrado e Investigación, Maestría en Ciencias de Ingeniería en Sistemas Energéticos, Instituto Politécnico Nacional, Ciudad de México, México

Guillermo Luque-Zúñiga, Instituto Politécnico Nacional

Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Querétaro, Laboratorio de Energías Alternativas, Instituto Politécnico Nacional, Ciudad de México, México

Omar Jiménez-Ramírez, Instituto Politécnico Nacional

Escuela Superior de Ingeniería Mecánica y Eléctrica Culhuacán, Sección de Estudios de Posgrado e Investigación, Maestría en Ciencias de Ingeniería en Sistemas Energéticos, Instituto Politécnico Nacional, Ciudad de México, México

Gonzalo Alonso Ramos-López, Instituto Politécnico Nacional

Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Querétaro, Laboratorio de Energías Alternativas, Instituto Politécnico Nacional, Ciudad de México, México

Rubén Vázquez Medina, Instituto Politécnico Nacional

Investigador, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Querétaro, Laboratorio de Energías Alternativas, Instituto Politécnico Nacional, Ciudad de México, México

References

L. V. Kontrosh, V. S. Kalinovsky, A. V. Khramov y E. V. Kontrosh, “Estimation of the chemical materials volumes required for the post-growth technology manufacturing InGaP/GaAs/Ge with a concentrator and planar α–Si:H/Si solar cells for 1 MW solar power plants”, Clean. Eng. Technol., vol. 4, 2021, art. n.° 100186, doi: 10.1016/j.clet.2021.100186.

X. Apaolaza-Pagoaga, A. Carrillo-Andrés, C. Rodrigues y F. Fernández-Hernández, “The effect of partial loads on the performance of a funnel solar cooker”, Appl. Therm. Eng., vol. 219, parte C, 2023, art. n.° 119643, doi: 10.1016/j.applthermaleng.2022.119643.

A. K. Azad y S. Parvin, “Bibliometric analysis of photovoltaic thermal (PV/T) system: From citation mapping to research agenda”, Energy Reports, vol. 8, pp. 2699-2711, 2022, doi: 10.1016/j.egyr.2022.01.182.

H. Kaiyan, Z. Hongfei, T. Tao y X. Xiaodi, “Experimental investigation of high temperature congregating energy solar stove with sun light funnel”, Energy Convers. Manag., vol. 50, n.º 12, pp. 3051-3055, 2009, doi: 10.1016/j.enconman.2009.08.009.

A. Menéndez-Velázquez et al., “Towards a luminescent solar concentrator with ultra-broadband absorption and spectral conversion for optimizing photovoltaic solar cell response: ‘The photonic cannon shot’”, Optical Materials, vol. 142, 2023, art. n.º 114005, doi: 10.1016/j.optmat.2023.114005.

A. H. Alami, A. Olabi, A. Mdallal, A. Rezk, A. Radwan, S. M. A. Rahman, S. K. Shah y M. A. Abdelkareem, “Concentrating solar power (CSP) technologies: Status and analysis”, Int. J. Thermofluids, vol. 18, n.º 3, 2023, art. n.º 100340, doi: 10.1016/j.ijft.2023.100340.

H. Zheng, G. Wu, T. Tao, Y. Su y J. Dai, “Combination of a light funnel concentrator with a deflector for orientated sunlight transmission”, Energy Convers. Manag., vol. 88, pp. 785-793, 2014, doi: 10.1016/j.enconman.2014.09.004.

A. Carrillo-Andrés, X. Apaolaza-Pagoaga, C. Rodrigues, E. Rodríguez-García y F. Fernández-Hernández, “Optical characterization of a funnel solar cooker with azimuthal sun tracking through ray-tracing simulation”, Solar Energy, vol. 233, pp. 84-95, 2022, doi: 10.1016/j.solener.2021.12.027.

G. Luque-Zuñiga, R. Vázquez-Medina, G. Ramos-López, H. Yee-Madeira y D. A. Pérez-Márquez, “Increase of solar harvest time with a double static concentration refractive-reflective system”, 2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, 2020, pp. 1-5, doi: 10.1109/ROPEC50909.2020.9258725.

A. J. Grede, J. S. Price y N. C. Giebink, “Fundamental and practical limits of planar tracking solar concentrators”, Opt. Express, vol. 24, n.º 26, pp. A1635, 2016, doi: 10.1364/OE.24.0A1635.

S. S. Salvi et al., “Technological advances to maximize solar collector energy output: a review”, J. Electron. Packag., vol. 140, n.º 4, 2018, doi: 10.1115/1.4041219.

A. Shahsavari y M. Akbari, “Potential of solar energy in developing countries for reducing energy-related emissions”, Renew. Sustain. Energy Rev., vol. 90, pp. 275-291, 2018, doi: 10.1016/j.rser.2018.03.065.

S. Gorjian et al., “A review on recent advancements in performance enhancement techniques for low-temperature solar collectors”, Energy Convers. Manag., vol. 222, 2020, art. n.º 113246, doi: 10.1016/j.rser.2018.03.065.

F. Masood et al., “The compound parabolic concentrators for solar photovoltaic applications: Opportunities and challenges”, Energy Reports, vol. 8, pp. 13558-13584, 2022, doi: 10.1016/j.egyr.2022.10.018.

G. Luque-Zuñiga, R. Vázquez-Medina, G. Ramos-López, D. A. Pérez-Márquez y H. Yee-Madeira, “Simulation and Experimental Evaluation of a Refractive-Reflective Static Solar Concentrator”, Energies, vol. 16, n.º 3, 2023, doi: 10.3390/en16031071.

X. Xiaodi, Z. Hongfei, H. Kaiyan, C. Zhili, T. Tao y X. Guo, “Experimental study on a new solar boiling water system with holistic track solar funnel concentrator”, Energy, vol. 35, n.º 2, pp. 692-697, 2010, doi: 10.1016/j.energy.2009.10.033.

J. Li et al., “Thermodynamic investigation of spectral splitting hybrid system integrated Cassegrain concentrator and mid/low-temperature solar thermochemical storage”, Renewable Energy, vol. 217, 2023, art. n.º 119152, doi: 10.1016/j.renene.2023.119152.

D. Malacara, “Mathematical Representation of an Optical Surface and Its Characteristics”, en Optical Shop Testing, 3.ª ed., E. Malacara, ed. Nueva Jersey: John Wiley & Sons, Inc., 2007, cap. 18, pp. 832-851, doi: 10.1002/9780470135976.ch18.

Atmel Corporation, “8-bit AVR Microcontroller with 32K Bytes In-System Programmable Flash”, ficha técnica de ATmega328P, 2016 [Rev.: 7810D–AVR–01/15].

Vishay Intertechnology, “Silicon PIN Photodiode”, ficha técnica de BPW34 y BPW34S, 2024 [Rev.: 2.1, 23-ag.-11].

A. S. Morris, Measurement and Instrumentation Principles, 3.ª ed. Massachusetts: Butterworth-Heinemann, 2001, pp. 1743-1744.

J. G. Webster y H. Eren, eds., Measurement, instrumentation, and sensors handbook: spatial, mechanical, thermal, and radiation measurement, 2.ª ed. Boca Ratón: CRC Press, 2017.

Published

2024-06-13

How to Cite

Cordero-Guillén, A., Luque-Zúñiga, G., Jiménez-Ramírez, O., Ramos-López, G. A., & Vázquez Medina, R. (2024). Reflective-Refractive Static Solar Concentrator: Construction and Experimental Evaluation. Cultura Científica Y Tecnológica, 21(2), 5–14. https://doi.org/10.20983/culcyt.2024.2.2.1