Implementation of Guided Inquiry with PhET Simulations on flotation at the high school level

Authors

DOI:

https://doi.org/10.20983/culcyt.2024.3.2e.5

Keywords:

Physics teaching, flotation, guided inquiry, PhET

Abstract

This study aims to analyze students' perceptions in the acquisition of knowledge about the concept of flotation through the implementation of guided inquiry using PhET simulations. The implementation was carried out through the design of Worksheets applied to three groups of technological high school students located in Sinaloa, Mexico. The analysis of students' perceptions towards guided inquiry with PhET simulations was carried out through participant observation and semi-structured interviews through five proposed categories. The results show an increased appropriation of the concept of flotation and promote collaborative work among students. The conclusions show that guided inquiry with PhET simulations significantly improves students' understanding and motivation, promoting collaboration and active learning. Challenges were identified in the familiarization and application of the simulations. The benefits of the research show that guided inquiry and PhET simulations provide an interactive and safe learning experience, allowing for a deeper understanding of concepts and their application in real-life situations.

Downloads

Download data is not yet available.

Author Biographies

Pedro Oliver Cabanillas-García, Universidad Autónoma de Sinaloa

Dirección General de Escuelas Preparatorias, Universidad Autónoma de Sinaloa

José Alberto Alvarado-Lemus, Universidad Autónoma de Sinaloa

Coordinador Estatal de la Academia de Física, Dirección General de Escuelas Preparatorias, Universidad Autónoma de Sinaloa

Levy Noé Inzunza-Camacho, Universidad Autónoma de Sinaloa

Coordinador Estatal de la Academia de Química, Dirección General de Escuelas Preparatorias, Universidad Autónoma de Sinaloa

References

N. D. Finkelstein et al., “When learning about the real world is better done virtually: A study of substituting computer simulations for laboratory equipment”, Phys. Rev. ST Phys. Educ. Res., vol. 1, n.º 1, art. 010103, oct. 2005, doi: 10.1103/PhysRevSTPER.1.010103.

H. Putranta, H. Kuswanto, M. Hajaroh, S. I. Astuti y Rukiyati, “Strategies of Physics Learning Based on Traditional Games in Senior High Schools during the Covid-19 Pandemic”, Rev. Mex. Fis. E, vol. 19, n.º 1 en.-jun., nov. 2021, doi: 10.31349/RevMexFisE.19.010207.

R. L. Mazzola, P. Gondoni, M. Bozzi, J. E. Raffaghelli y M. Zani, “Exploring Effective Physics Teaching Strategies in High Schools during the COVID-19 Pandemic”, Educ. Sci., vol. 13, n.º 8, art. 799, ag. 2023, doi: 10.3390/educsci13080799.

K. Khan, M. I. Majoka, K. Khurshid y M. H. Shah, “Impact of Active Learning Method on Students Academic Achievement in Physics at Secondary School Level in Pakistan”, Journal of Education & Social Sciences, vol. 5, n.º 2, pp. 127-144, oct. 2017, doi: 10.20547/jess0521705204.

C. E. Mora Ley, R. Sánchez Sánchez y I. B. Culaba, Aprendizaje activo de la física. Clases demostrativas interactivas. Ediciones Comunicación Científica, 2021, doi: 10.52501/cc.007.

N. Ullah y A. S. Almani, “Factors Affecting Students’ Academic Performance: A Case Study Of Secondary Schools Of Makran Division Balochistan, Pakistan”, Webology, vol. 19, n.º 2, pp. 2749-2764, 2022.

H. D. Assem, L. Nartey, E. Appiah y J. K. Aidoo, “A Review of Students’ Academic Performance in Physics: Attitude, Instructional Methods, Misconceptions and Teachers Qualification”, EJEDU, vol. 4, n.º 1, pp. 84-92, en. 2023, doi: 10.24018/ejedu.2023.4.1.551.

M. Ramírez, G. Ávila y F. Escobar, “Discussion forum for the learning of Modern Physics in high school Mexico”, J. Phys.: Conf. Ser., vol. 2490, n.º 1, art. 012005, abr. 2023, doi: 10.1088/1742-6596/2490/1/012005.

D. Halliday, R. Resnick y J. Walker, Principles of Physics, 10.ª ed. John Wiley & Sons Singapore Pte. Ltd., 2014.

U. Dorji, “Misconception on floating and sinking”, IJELS, vol. 6, n.º 5, pp. 243-249, 2021, doi: 10.22161/ijels.65.37.

C. Hattan y P. A. Alexander, “The effects of knowledge activation training on rural middle-school students’ expository text comprehension: A mixed-methods study”, J Educ Psychol, vol. 113, n.º 5, pp. 879-897, jul. 2021, doi: 10.1037/edu0000623.

S. Ünal, “Changing Students’ Misconceptions of Floating and Sinking Using Hands-On Activities”, J. Balt. Sci. Educ., vol. 7, n.º 3, pp. 134-146, 2008.

R. Marshall, “Capsizing icebergs: an exercise in the application of the principle of the conservation of energy with a very surprising result”, Phys. Educ., vol. 50, n.º 3, pp. 299-304, may. 2015, doi: 10.1088/0031-9120/50/3/299.

A. M. Roberts, “Dynamics of free-floating gas-filled rubber balloons”, Phys. Educ., vol. 30, n.º 2, pp. 109-113, Mar. 1995, doi: 10.1088/0031-9120/30/2/011.

C. E. Wieman, W. K. Adams y K. K. Perkins, “PhET: Simulations That Enhance Learning”, Science, vol. 322, n.º 5902, pp. 682-683, oct. 2008, doi: 10.1126/science.1161948.

K. Perkins et al., “PhET: Interactive Simulations for Teaching and Learning Physics”, Phys. Teach., vol. 44, n.º 1, pp. 18-23, en. 2006, doi: 10.1119/1.2150754.

K. Y. Castrejón Parga, J. M. Sáenz Villela, E. S. Lara Pérez y D. B. López Tavares, “Implementación de Hojas de Actividades y Clases Interactivas Demostrativas con Simulaciones PhET en Física Conceptual”, Cult. Científ. y Tecnol., vol. 20, n.º 3, 2023, doi: 10.20983/culcyt.2023.3.2e.3.

D. B. López y J. Orozco, “Clases Interactivas Demostrativas con el uso de simulaciones PhET para Mecánica en Preparatoria”, LAJPE, vol. 11, n.º 2, 2017.

C. Mora, M. Moreira y J. Meneses-Villagrá, “Aprendizaje Activo de la Física y análisis de Rasch para circuitos eléctricos mediante physlets”, Revista de Enseñanza de la Física, vol. 33, n.º 2, pp. 365-378, 2021, doi: 10.55767/2451.6007.v33.n2.35284.

H. J. Banda y J. Nzabahimana, “The Impact of Physics Education Technology (PhET) Interactive Simulation-Based Learning on Motivation and Academic Achievement Among Malawian Physics Students”, J Sci Educ Technol, vol. 32, pp. 127-141, feb. 2023, doi: 10.1007/s10956-022-10010-3.

B. Rayan, W. Daher, H. Diab y N. Issa, “Integrating PhET Simulations into Elementary Science Education: A Qualitative Analysis”, Educ. Sci., vol. 13, n.º 9, art. 884, ag. 2023, doi: 10.3390/educsci13090884.

J. R. Mera-Menéndez y W. O. López-González, “Simuladores PHET: una herramienta didáctica para el mejoramiento del rendimiento académico de estudiantes en Energía Mecánica”, MQRInvestigar, vol. 7, n.º 4, pp. 112-130, sept. 2023, doi: 10.56048/MQR20225.7.4.2023.112-130.

S. Uwambajimana, E. Minani, A. D. Mollel y P. Nyirahabimana, “The impact of using PhET simulation on conceptual understanding of electrostatics within selected secondary schools of Muhanga District, Rwanda”, Journal of Mathematics and Science Teacher, vol. 3, n.º 2, art. em045, ag. 2023, doi: 10.29333/mathsciteacher/13595.

M. R. Otero y M. F. Arlego, “Teaching and Learning Optics in High School: From Fermat to Feynman”, Educ. Sci., vol. 13, n.º 5, art. 503, may. 2023, doi: 10.3390/educsci13050503.

P. O. Cabanillas-García, J. A. Alvarado-Lemus, L. N. Inzunza-Camacho, J. M. Mendoza-Román y J. A. Félix-Madrigal, “El uso de simuladores virtuales para las prácticas de laboratorio de física en tiempo de Covid-19”, Lat. Americ. J. of Develop., vol. 4, n.º 4, pp. 1359-1369, 2022, doi: 10.46814/lajdv4n4-002.

F. T. Ayasrah, K. Alarabi, M. k. Al mansouri, H. A. Abdel y K. Al-Said, “Enhancing secondary school students’ attitudes toward physics by using computer simulations”, Int. J. Data Netw. Sci., vol. 8, n.º 1, pp. 369-380, 2024, doi: 10.5267/j.ijdns.2023.9.017.

C. Chotimah y Festiyed, “A meta-analysis of the effects of using PhET interactive simulations on student’s worksheets toward senior high school students learning result of physics”, J. Phys.: Conf. Ser., vol. 1481, n.º 1, art. 012093, mar. 2020, doi: 10.1088/1742-6596/1481/1/012093.

C. E. Wieman, W. K. Adams, P. Loeblein y K. K. Perkins, “Teaching Physics Using PhET Simulations”, Phys. Teach., vol. 48, n.º 4, pp. 225-227, abr. 2010, doi: 10.1119/1.3361987.

L. Kaldaras et al., “Employing technology-enhanced feedback and scaffolding to support the development of deep science understanding using computer simulations”, Int J STEM Educ, vol. 11, n.º 30, jul. 2024, doi: 10.1186/s40594-024-00490-7.

D. B. López, “Estrategias didácticas para el uso eficaz de simulaciones interactivas en el aula”, Lat. Am. J. Sci. Educ., vol. 7, art. 12019, 2020.

C. I. Palma. “Indagación con la clase entera: Ley de Beer & Lambert”. PhET Interactive Simulations. Accedido: jul. 20, 2024. [En línea]. Disponible en: https://phet.colorado.edu/vi/activities/6890

E. Yulianti, N. N. Zhafirah y N. Hidayat, “Exploring Guided Inquiry Learning with PhET Simulation to Train Junior High School Students Think Critically”, Berkala Ilmiah Pendidikan Fisika, vol. 9, n.º 1, mar. 2021, doi: 10.20527/bipf.v9i1.9617.

A. S. Budi et al., “PhET-assisted electronic student worksheets of physics (eSWoP) on heat for inquiry learning during covid”, J. Phys.: Conf. Ser., vol. 2104, n.º 1, art. 012030, nov. 2021, doi: 10.1088/1742-6596/2104/1/012030.

N. Rutten, J. T. van der Veen y W. R. van Joolingen, “Inquiry-Based Whole-Class Teaching with Computer Simulations in Physics”, Int. J. Sci. Educ., vol. 37, n.º 8, pp. 1225-1245, may. 2015, doi: 10.1080/09500693.2015.1029033.

I. Ardisa, N. N. S. P. Verawati, G. Gunawan y S. Ayub, “Effect of PhET Simulation-Assisted Guided Inquiry Learning Model on Students’ Critical Thinking Ability in Elasticity Material”, Jurnal Pendidikan Fisika dan Teknologi, vol. 8, n.º 2, pp. 262-269, dic. 2022, doi: 10.29303/jpft.v8i2.4391.

O. D. Pranata, “Enhancing Conceptual Understanding and Concept Acquisition of Gravitational Force through Guided Inquiry Utilizing PhET Simulation”, Sainstek : Jurnal Sains dan Teknologi, vol. 15, n.º 1, jun. 2023, doi: 10.31958/js.v15i1.9191.

N. K. Denzin et al., The SAGE Handbook of Qualitative Research, 6.ª ed. SAGE Publications, 2023.

J. P. Goetz y M. D. LeCompte, Etnografía y diseño cualitativo en investigación educativa. Madrid: Ediciones Morata, S. A, 1988.

M. Q. Patton, Qualitative Research & Evaluation Methods: Integrating Theory and Practice, 4.ª ed. SAGE Publications, 2015.

K. Gregory, L. Geiger y P. Salisbury, “Voyant Tools and Descriptive Metadata: A Case Study in How Automation Can Compliment Expertise Knowledge”, J Libr Metadata, vol. 22, n.º 1-2, pp. 1-16, abr. 2022, doi: 10.1080/19386389.2022.2030635.

M. Dabrowska, “Análisis semántico y cuantitativo de La casa de Bernarda Alba en el aula con Voyant Tools. Una aproximación didáctica al análisis literario”, RIPIE, vol. 2, n.º 2, dic. 2022.

G. Hetenyi, A. Lengyel y M. Szilasi, “Quantitative analysis of qualitative data: Using Voyant Tools to investigate the sales-marketing interface”, J. Indust. Engin. Manag., vol. 12, n.º 3, nov. 2019, doi: 10.3926/jiem.2929.

A. Miller, “Text Mining Digital Humanities Projects: Assessing Content Analysis Capabilities of Voyant Tools”, J. Web Librariansh., vol. 12, n.º 3, pp. 169-197, jul. 2018, doi: 10.1080/19322909.2018.1479673.

H. Hendrigan, “Mixing digital humanities and applied science librarianship: Using Voyant Tools to reveal word patterns in faculty research”, ISTL, n.º 91, jun. 2019.

N. Rutten, W. R. van Joolingen y J. T. van der Veen, “The learning effects of computer simulations in science education”, Comput Educ, vol. 58, n.º 1, pp. 136-153, en. 2012, doi: 10.1016/j.compedu.2011.07.017.

D. J. Nicol y D. Macfarlane‐Dick, “Formative assessment and self‐regulated learning: a model and seven principles of good feedback practice”, Stud. High. Educ., vol. 31, n.º 2, pp. 199-218, abr. 2006, doi: 10.1080/03075070600572090.

Published

2024-11-26

How to Cite

[1]
P. O. Cabanillas-García, J. A. . Alvarado-Lemus, and L. N. Inzunza-Camacho, “Implementation of Guided Inquiry with PhET Simulations on flotation at the high school level”, Cult. Científ. y Tecnol., vol. 21, no. 3, pp. E49-E61, Nov. 2024.

Issue

Section

Edición Especial "Aprendizaje Integral a lo Largo de la Vida"