Iterative integration-by-parts procedure and its efficacy assessment in the classroom
DOI:
https://doi.org/10.20983/culcyt.2024.3.2.9Keywords:
problem-solving strategy, Leibniz's integral rule, recursive integration by parts, solution method, quantitative assessmentAbstract
In this work, a simple strategy for iteratively applying Leibniz's integration rule from elementary calculus to operational problems was evaluated. Leibniz's integration rule (also known as the “integration by parts formula”) is a relatively simple formula. However, some typical antiderivative calculus problems require applying this formula iteratively. Unfortunately, this process leads to erroneous and time-consuming solutions due to the various applications of Leibniz's rule and the complexity of the calculations. The strategy proposed in this work reduces the time spent obtaining the solutions of those iterative problems. Furthermore, the procedure used is simple, easy to describe algorithmically, and produces faster results. To show the efficiency of this strategy, an experimental study was conducted with a group of undergraduate engineering students at a public university in Mexico. The ability of these students to use elementary rules of integration was demonstrated by a pretest and the group was divided into two subgroups, one of which was taught the traditional Leibniz rule, while the second learned the strategy studied in this work. The results showed that the current approach produces decisively faster results than the traditional method.
Downloads
References
A. J. Boonen, B. B. de Koning, J. Jolles y M. van der Schoot, “Word problem solving in contemporary math education: A plea for reading comprehension skills training”, Front. Psychol., vol. 7, art. 191, 2016, doi: 10.3389/fpsyg.2016.00191.
H. Altun, “Examining the problem solving skills of primary education mathematics teacher candidates according to their learning styles”, Int. Educ. Stud., vol. 12, n.º 4, pp. 60-73, 2019, doi: 10.5539/ies.v12n4p60.
E. Kikas, K. Mädamürk y A. Palu, “What role do comprehension-oriented learning strategies have in solving math calculation and word problems at the end of middle school?” Br J Educ Psychol, vol. 90, supl., pp. 105-123, 2020, doi: 10.1111/bjep.12308.
S. Akbasli, M. Sahin y Z. Yaykiran, “The effect of reading comprehension on the performance in science and mathematics”, Journal of Education and Practice, vol. 7, n.º 16, pp. 108-121, 2016.
J. M. Goodrich y J. M. Namkung, “Correlates of reading comprehension and word-problem solving skills of Spanish-speaking dual language learners”, Early Child. Res. Q., vol. 48, pp. 256-266, 2019, doi: 10.1016/j.ecresq.2019.04.006.
L. Stoffelsma y W. Spooren, “The relationship between English reading proficiency and academic achievement of first-year science and mathematics students in a multilingual context”, Int J of Sci and Math Educ, vol. 17, pp. 905-922, 2019, doi: 10.1007/s10763-018-9905-z.
Y.-C. Jian, “Reading instructions facilitate signaling effect on science text for young readers: an eye-movement study”, Int J of Sci and Math Educ, vol. 17, pp. 503-522, 2019, doi: 10.1007/s10763-018-9878-y.
S. Kim, M. Pollanen, M. G. Reynolds y W. S. Burr, “Problem solving as a path to comprehension”, Math.Comput. Sci., vol. 14, pp. 1-15, 2020, doi: 10.1007/s11786-020-00457-1.
J. Cai y C. Jiang, “An analysis of problem-posing tasks in Chinese and us elementary mathematics textbooks”, Int J of Sci and Math Educ, vol. 15, n.º 8, pp. 1521-1540, 2017, doi: 10.1007/s10763-016-9758-2.
N. Akben, “Effects of the problem-posing approach on students’ problem solving skills and metacognitive awareness in science education”, Res Sci Educ, vol. 50, n.º 3, pp. 1143-1165, 2020, doi: 10.1007/s11165-018-9726-7.
M. Molina, S. Rodríguez-Domingo, M. C. Cañadas y E. Castro, “Secondary school students’ errors in the translation of algebraic statements”, Int. J. Sci. Math. Educ., vol. 15, n.º 6, pp. 1137-1156, 2017, doi: 10.1007/s10763-016-9739-5.
E. M. Schoevers, P. P. Leseman y E. H. Kroesbergen, “Enriching mathematics education with visual arts: Effects on elementary school students’ ability in geometry and visual arts”, Int. J. Sci. Math. Educ., vol. 18, pp. 1613-1634, 2019, doi: 10.1007/s10763-019-10018-z.
M. F. Amir, F. N. Hasanah y H. Musthofa, “Interactive multimedia based mathematics problem solving to develop students’ reasoning”, Int. J. Eng. Technol., vol. 7, n.º 2.14, pp. 272-276, 2018, doi: 10.14419/ijet.v7i2.12.14691.
H.-Y. Sung, G.-J. Hwang y Y.-C. Chang, “Development of a mobile learning system based on a collaborative problem-posing strategy”, Interact. Learn. Environ., vol. 24, n.º 3, pp. 456-471, 2016, doi: 10.1080/10494820.2013.867889.
X.-D. Ye, Y.-H. Chang y C.-L. Lai, “An interactive problem-posing guiding approach to bridging and facilitating pre-and in-class learning for flipped classrooms”, Interact. Learn. Environ., vol. 27, n.º 8, pp. 1075-1092, 2019, doi: 10.1080/10494820.2018.1495651.
M. V. Siagan, S. Saragih y B. Sinaga, “Development of learning materials oriented on problem-based learning model to improve students’ mathematical problem solving ability and metacognition ability”, Int Elect J Math Ed, vol. 14, n.º 2, pp. 331-340, 2019, doi: 10.29333/iejme/5717.
C.-H. Chen y C.-H. Chiu, “Collaboration scripts for enhancing metacognitive self-regulation and mathematics literacy”, Int J of Sci and Math Educ, vol. 14, n.º 2, pp. 263-280, 2016, doi: 10.1007/s10763-015-9681-y.
B. Rott, “Teachers’ behaviors, epistemological beliefs, and their interplay in lessons on the topic of problem solving”, Int. J. Sci. Math. Educ., vol. 18, n.º 5, pp. 903-924, 2020, doi: 10.1007/s10763-019-09993-0.
P. W. Hempson, “Repeated integration by parts”, Int. J. Math. Educ. Sci. Technol., vol. 14, n.º 4, pp. 437-439, 1983, doi: 10.1080/0020739830140407.
M. J. Barany, “Integration by parts: Wordplay, abuses of language, and modern mathematical theory on the move”, Hist. Stud. Nat. Sci., vol. 48, n.º 3, pp. 259-299, 2018, doi: 10.1525/hsns.2018.48.3.259.
C. C. Tisdell, “Tic-tac-toe and repeated integration by parts: alternative pedagogical perspectives to Lima’s integral challenge”, Int. J. Math. Educ. Sci. Technol., vol. 51, n.º 3, pp. 424-430, 2020, doi: 10.1080/0020739X.2019.1620969.
M. Özgeldi y U. Aydın, “Identifying competency demands in calculus textbook examples: the case of integrals”, Int. J. Sci. Math. Educ., vol. 19, pp. 171-191, 2020, doi: 10.1007/s10763-019-10046-9.
A. Ayebo y A. Mrutu, “An exploration of calculus students’ beliefs about mathematics”, Int Elect J Math Ed, vol. 14, n.º 2, pp. 385-392, 2019, doi: 10.29333/iejme/5728.
P. Liljedahl, M. Santos-Trigo, U. Malaspina y R. Bruder, “Problem-solving in mathematics education”, en Problem-solving in mathematics education (Serie ICME-13 Tropical Surveys). Springer, Cham., pp. 686-693, 2020, doi: 10.1007/978-3-319-40730-2_1.
V. Borji y V. Font, “Exploring students’ understanding of integration by parts: A combined use of APOS and OSA”, EURASIA J Math Sci Tech Ed, vol. 15, n.º 7, art. em1721, 2019, doi: 10.29333/ejmste/106166.
J. E. Marsden y A. Tromba, Vector Calculus. Nueva York: MacMillan, 2003.
Y. Liu y N. Privault, “An integration by parts formula in a Markovian regime switching model and application to sensitivity analysis”, Stoch Anal Appl, vol. 35, n.º 5, pp. 919-940, 2017, doi: 10.1080/07362994.2017.1339613.
T. Abdeljawad, A. Atangana, J. Gómez-Aguilar y F. Jarad, “On a more general fractional integration by parts formulae and applications”, Phys. A: Stat. Mech. Appl., vol. 536, art. 122494, 2019, doi: 10.1016/j.physa.2019.122494.
K. Elworthy, Y. Le Jan y X.-M. Li, “Integration by parts formulae for degenerate diffusion measures on path spaces and diffeomorphism groups”, C. R. Acad. Sci. Paris Ser. I Math., vol. 323, n.º 8, pp. 921-926, 1996, doi: 10.48550/arXiv.1911.09739.
A. Friedman, Foundations of modern analysis, 1.ª ed. Nueva York: Courier Corporation, 1982.
P. Merrotsy, “A brief but important note on the product rule”, Aust Sr Math J, vol. 30, n.º 2, pp. 57-63, 2016.
J. Stewart, Calculus: Concepts and Contexts. Nueva York: Cengage Learning, 2009.
M. Mann y M. C. Enderson, “Give me a formula not the concept! student preference to mathematical problem solving”, J. Adv. Mark. Educ., n.º 25 (núm. especial), pp. 15-24, 2017.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Dr. Jorge Eduardo Macías Díaz, Miguel Ángel Abreu Terán, Dr. Alejandro Román Loera
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Todos los contenidos de CULCYT se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento-No Comercial 4.0 Internacional” (CC-BY-NC). Puede consultar desde aquí la versión informativa de la licencia.
Los autores/as que soliciten publicar en esta revista, aceptan los términos siguientes: a) los/las autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra; y b) se permite y recomienda a los/las autores/as agregar enlaces de sus artículos en CULCYT en la página web de su institución o en la personal, debido a que ello puede generar intercambios interesantes y aumentar las citas de su obra publicada.