VLSI Design and Comparative Analysis of Several Types of Fixed and Simple Precision Floating Point Multipliers
DOI:
https://doi.org/10.20983/culcyt.2021.1.2.4Keywords:
VLSI integrated circuit, VHDL, Booth-2, Wallace tree, floating-pointAbstract
Multiplication is an arithmetic operation that has a meaningful impact on the performance of several real-life applications, such as digital signal and image processing. Analysis and comparison of different types of fixed-point multipliers such as Wallace tree, array, and Booth-2 with truncated and non-truncated versions were included in this design. Fixed-point multipliers were used to design floating-point multipliers through a hardware description language. As a result, area and speed values were analyzed. Booth-2 fixed multiplier with truncation and RCA adders present both the longest delay and the largest area consumption. Wallace tree floating-point multiplier required the smallest area and the shortest delay. The 8-bit versions of fixed-point multipliers were physically synthesized, using the Alliance tools, to obtain the layout of the circuits. The integrated circuits were successfully fabricated in a 0.5-μm CMOS technology.
Downloads
References
R. Shanmuganathan and K. Brindhadevi, “Comparative analysis of various types of multipliers for effective low power,” Microelectron. Eng., vol. 214, pp. 28-37, 2019, doi: 10.1016/j.mee.2019.04.015.
V. Leon, S. Xydis, D. Soudris, and K. Pekmestzi, “Energy-efficient VLSI implementation of multipliers with double LSB operands,” IET Circuits, Devices Syst., vol. 13, no. 6, pp. 816-821, 2019, doi: 10.1049/iet-cds.2018.5039.
I. Hussain and M. Kumar, “A Fast and Reduced Complexity Wallace Tree Multiplier,” Journal of Active and Passive Electronic Devices, vol. 12, no. 1-2, pp. 63-71, 2017.
P. Lokesh, U. Somalatha, and S. Chandana, “VLSI Modeling of high performance aging aware multiplier by using adaptive hold logic circuit,” International Journal of Engineering Research and Applications, vol. 8, no. 2, pp. 7-12, 2018.
M. Jhamb, Garima, and H. Lohani, “Design, implementation and performance comparison of multiplier topologies in power-delay space,” Eng. Sci. Technol. an Int. J., vol. 19, no. 1, pp. 355-363, 2016, doi: 10.1016/j.jestch.2015.08.006.
A. Kamaraj and P. Marichamy, “Design of integrated reversible fault-tolerant arithmetic and logic unit,” Microprocess Microsyst, vol. 69, pp. 16-23, 2019, doi: 10.1016/j.micpro.2019.05.009.
M. Ito, D. Chinnery, and K. Keutzer, “Low power multiplication algorithm for switching activity reduction through operand decomposition,” Proceedings 21st International Conference on Computer Design, 2003, pp. 21-26, doi: 10.1109/ICCD.2003.1240868.
Y. Jiang, A. Al-Sheraidah, Y. Wang, E. Sha, and J.-G. Chung, “A novel multiplexer-based low-power full adder,” in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 51, no. 7, pp. 345-348, July 2004, doi: 10.1109/TCSII.2004.831429.
N. H. E. Weste and D. M. Harris, CMOS VLSI Design: A Circuits and Systems Perspective, Boston: Addison-Wesley, 2011.
1076-2008 - IEEE Standard VHDL Language Reference Manual, IEEE Standards Association (IEEE SA), USA, 2009.
754-2008 - IEEE Standard for Floating-Point Arithmetic, IEEE Standards Association (IEEE SA), New York, 2008.
M. Gök, “A novel IEEE rounding algorithm for high-speed floating-point multipliers,” Integration, vol. 40, no. 4, pp. 549-560, 2007, doi: 10.1016/j.vlsi.2006.12.001.
Z. Huang and M. D. Ercegovac, “High-performance low-power left-to-right array multiplier design,” in IEEE Transactions on Computers, vol. 54, no. 3, pp. 272-283, March 2005, doi: 10.1109/TC.2005.51.
C. S. Wallace, “A Suggestion for a Fast Multiplier,” in IEEE Transactions on Electronic Computers, vol. EC-13, no. 1, pp. 14-17, Feb. 1964, doi: 10.1109/PGEC.1964.263830.
A. D. Booth, “A Signed Binary Multiplication Technique,” Q J Mech Appl Math, vol. 4, no. 2, pp. 236-240, 1951, doi: https://doi.org/10.1093/qjmam/4.2.236.
T.-A. Chu, “Booth multiplier with low power high performance input circuitry,” U.S. Patent 6,393,454 B1, May. 21, 2002.
J. G. Earle, “Latched carry save adder circuit for multipliers,” U.S. Patent 3,340,388, Sept. 5, 1967.
“Alliance/Coriolis VLSI CAD Tools.” Coriolis.lip6.fr. http://coriolis.lip6.fr/ (accessed March, 15, 2021).
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Abimael Jiménez Pérez, Marco Antonio Gurrola Navarro, Víctor Manuel Valenzuela De la Cruz, José Antonio Muñoz Gómez, Omar Aguilar Loreto
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Todos los contenidos de CULCYT se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento-No Comercial 4.0 Internacional” (CC-BY-NC). Puede consultar desde aquí la versión informativa de la licencia.
Los autores/as que soliciten publicar en esta revista, aceptan los términos siguientes: a) los/las autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra; y b) se permite y recomienda a los/las autores/as agregar enlaces de sus artículos en CULCYT en la página web de su institución o en la personal, debido a que ello puede generar intercambios interesantes y aumentar las citas de su obra publicada.