VLSI Design and Comparative Analysis of Several Types of Fixed and Simple Precision Floating Point Multipliers

Autores/as

  • Abimael Jiménez Pérez Universidad Autónoma de Ciudad Juárez Instituto de Ingeniería y Tecnología. Departamento de Ingeniería Eléctrica y Computación Av. del Charro 450​ C. P. , 32310 Juárez, Chihuahua, México http://orcid.org/0000-0002-9514-4570
  • Marco Antonio Gurrola Navarro Universidad de Guadalajara Centro Universitario de Ciencias Exactas e ingenierías. Blvd. Marcelino García Barragán 1421, 44430. Guadalajara, Jalisco, México.
  • Víctor Manuel Valenzuela De la Cruz Intel Guadalajara
  • José Antonio Muñoz Gómez Universidad de Guadalajara Departamento de Ingenierías Av. Independencia Nacional No. 151, 48900. Autlán, Jalisco, Mexico http://orcid.org/0000-0002-8724-8302
  • Omar Aguilar Loreto Universidad de Guadalajara Departamento de Ingenierías Av. Independencia Nacional No. 151, 48900. Autlán, Jalisco, Mexico http://orcid.org/0000-0002-0395-0066

DOI:

https://doi.org/10.20983/culcyt.2021.1.2.4

Palabras clave:

VLSI integrated circuit, VHDL, Booth-2, Wallace tree, floating-point

Resumen

Multiplication is an arithmetic operation that has a meaningful impact on the performance of several real-life applications, such as digital signal and image processing. Analysis and comparison of different types of fixed-point multipliers such as Wallace tree, array, and Booth-2 with truncated and non-truncated versions were included in this design. Fixed-point multipliers were used to design floating-point multipliers through a hardware description language. As a result, area and speed values were analyzed. Booth-2 fixed multiplier with truncation and RCA adders present both the longest delay and the largest area consumption. Wallace tree floating-point multiplier required the smallest area and the shortest delay. The 8-bit versions of fixed-point multipliers were physically synthesized, using the Alliance tools, to obtain the layout of the circuits. The integrated circuits were successfully fabricated in a 0.5-μm CMOS technology.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Abimael Jiménez Pérez, Universidad Autónoma de Ciudad Juárez Instituto de Ingeniería y Tecnología. Departamento de Ingeniería Eléctrica y Computación Av. del Charro 450​ C. P. , 32310 Juárez, Chihuahua, México

Profesor Titular C

 

Marco Antonio Gurrola Navarro, Universidad de Guadalajara Centro Universitario de Ciencias Exactas e ingenierías. Blvd. Marcelino García Barragán 1421, 44430. Guadalajara, Jalisco, México.

Profesor de Tiempo Completo

Departamento de Electrónica

 

José Antonio Muñoz Gómez, Universidad de Guadalajara Departamento de Ingenierías Av. Independencia Nacional No. 151, 48900. Autlán, Jalisco, Mexico

Profesor de Tiempo Completo

Departamento de Ingenierías


Omar Aguilar Loreto, Universidad de Guadalajara Departamento de Ingenierías Av. Independencia Nacional No. 151, 48900. Autlán, Jalisco, Mexico

Profesor de Tiempo Completo

Departamento de Ingenierías

 

Citas

R. Shanmuganathan and K. Brindhadevi, “Comparative analysis of various types of multipliers for effective low power,” Microelectron. Eng., vol. 214, pp. 28-37, 2019, doi: 10.1016/j.mee.2019.04.015.

V. Leon, S. Xydis, D. Soudris, and K. Pekmestzi, “Energy-efficient VLSI implementation of multipliers with double LSB operands,” IET Circuits, Devices Syst., vol. 13, no. 6, pp. 816-821, 2019, doi: 10.1049/iet-cds.2018.5039.

I. Hussain and M. Kumar, “A Fast and Reduced Complexity Wallace Tree Multiplier,” Journal of Active and Passive Electronic Devices, vol. 12, no. 1-2, pp. 63-71, 2017.

P. Lokesh, U. Somalatha, and S. Chandana, “VLSI Modeling of high performance aging aware multiplier by using adaptive hold logic circuit,” International Journal of Engineering Research and Applications, vol. 8, no. 2, pp. 7-12, 2018.

M. Jhamb, Garima, and H. Lohani, “Design, implementation and performance comparison of multiplier topologies in power-delay space,” Eng. Sci. Technol. an Int. J., vol. 19, no. 1, pp. 355-363, 2016, doi: 10.1016/j.jestch.2015.08.006.

A. Kamaraj and P. Marichamy, “Design of integrated reversible fault-tolerant arithmetic and logic unit,” Microprocess Microsyst, vol. 69, pp. 16-23, 2019, doi: 10.1016/j.micpro.2019.05.009.

M. Ito, D. Chinnery, and K. Keutzer, “Low power multiplication algorithm for switching activity reduction through operand decomposition,” Proceedings 21st International Conference on Computer Design, 2003, pp. 21-26, doi: 10.1109/ICCD.2003.1240868.

Y. Jiang, A. Al-Sheraidah, Y. Wang, E. Sha, and J.-G. Chung, “A novel multiplexer-based low-power full adder,” in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 51, no. 7, pp. 345-348, July 2004, doi: 10.1109/TCSII.2004.831429.

N. H. E. Weste and D. M. Harris, CMOS VLSI Design: A Circuits and Systems Perspective, Boston: Addison-Wesley, 2011.

1076-2008 - IEEE Standard VHDL Language Reference Manual, IEEE Standards Association (IEEE SA), USA, 2009.

754-2008 - IEEE Standard for Floating-Point Arithmetic, IEEE Standards Association (IEEE SA), New York, 2008.

M. Gök, “A novel IEEE rounding algorithm for high-speed floating-point multipliers,” Integration, vol. 40, no. 4, pp. 549-560, 2007, doi: 10.1016/j.vlsi.2006.12.001.

Z. Huang and M. D. Ercegovac, “High-performance low-power left-to-right array multiplier design,” in IEEE Transactions on Computers, vol. 54, no. 3, pp. 272-283, March 2005, doi: 10.1109/TC.2005.51.

C. S. Wallace, “A Suggestion for a Fast Multiplier,” in IEEE Transactions on Electronic Computers, vol. EC-13, no. 1, pp. 14-17, Feb. 1964, doi: 10.1109/PGEC.1964.263830.

A. D. Booth, “A Signed Binary Multiplication Technique,” Q J Mech Appl Math, vol. 4, no. 2, pp. 236-240, 1951, doi: https://doi.org/10.1093/qjmam/4.2.236.

T.-A. Chu, “Booth multiplier with low power high performance input circuitry,” U.S. Patent 6,393,454 B1, May. 21, 2002.

J. G. Earle, “Latched carry save adder circuit for multipliers,” U.S. Patent 3,340,388, Sept. 5, 1967.

“Alliance/Coriolis VLSI CAD Tools.” Coriolis.lip6.fr. http://coriolis.lip6.fr/ (accessed March, 15, 2021).

Publicado

2021-04-30 — Actualizado el 2021-08-26

Cómo citar

Jiménez Pérez, A., Gurrola Navarro, M. A., Valenzuela De la Cruz, V. M., Muñoz Gómez, J. A., & Aguilar Loreto, O. (2021). VLSI Design and Comparative Analysis of Several Types of Fixed and Simple Precision Floating Point Multipliers. Cultura Científica Y Tecnológica, 18(1), 1–9. https://doi.org/10.20983/culcyt.2021.1.2.4

Número

Sección

Artículos