Reconocimiento de objetos en una plataforma robótica móvil
Palabras clave:
Puntos característicos, descriptores, clasificación, algoritmo, SIFT, SURF, RobotinoResumen
La implementación de los algoritmos de reconocimiento de patrones SURF y SIFT en plataformas robóticas móviles permite el uso de los mismos en una serie de tareas amplias como lo pueden ser el acomodo de libros en una biblioteca de manera automática o la selección y aislamiento de material peligroso. Este trabajo se realizó utilizando la Interfaz de Programación de Aplicaciones (API) de una plataforma robótica móvil Robotino, las librerías de código libre OpenCV y el sensor de visión propio del robot. Ambos casos presentan ventajas y desventajas definidas ampliamente en la parte de desarrollo, así como los retos aún existentes en la investigación que continua en labor. Se busca ampliar los datos obtenidos implementando dichos algoritmos de manera autónoma en plataformas nuevas adquiridas y calibrando empíricamente cada algoritmo independientemente.Descargas
Citas
Chen, C. C., & Hsieh, S. L. (2015). Using binarization and hashing for efficient SIFT matching. Journal of Visual Communication and Image Representation, 30, 86-93.
Du, G., Su, F., & Cai, A. (2009, October). Face recognition using SURF features. In Sixth International Symposium on Multispectral Image Processing and Pattern Recognition (pp. 749628-749628). International Society for Optics and Photonics.
Harada, K., Tsuji, T., Nagata, K., Yamanobe, N., & Onda, H. (2014). Validating an object placement planner for robotic pick-and-place tasks. Robotics and Autonomous Systems, 62(10), 1463-1477.
Huang, L., Chen, C., Shen, H., & He, B. (2015). Adaptive registration algorithm of color images based on SURF. Measurement, 66, 118-124.
Kang, S., & Lee, S. W. (2002). Real-time tracking of multiple objects in space-variant vision based on magnocellular visual pathway. Pattern recognition, 35(10), 2031-2040.
Krapp, H. G. (2007). Polarization vision: how insects find their way by watching the sky. Current biology, 17(14), R557-R560.
Liu, Y., Liu, S., & Wang, Z. (2015). Multi-focus image fusion with dense SIFT. Information Fusion, 23, 139-155.
Miao, Q., Wang, G., Shi, C., Lin, X., & Ruan, Z. (2011). A new framework for on-line object tracking based on SURF. Pattern Recognition Letters, 32(13), 1564-1571.
Sykora, P., Kamencay, P., & Hudec, R. (2014). Comparison of SIFT and SURF Methods for Use on Hand Gesture Recognition based on Depth Map. AASRI Procedia, 9, 19-24.
Tsai, C. Y., & Song, K. T. (2009). Dynamic visual tracking control of a mobile robot with image noise and occlusion robustness. Image and Vision Computing, 27(8), 1007-1022.
Tzafestas, S. G. (2013). Introduction to mobile robot control. Elsevier.
Valgren, C., & Lilienthal, A. J. (2010). SIFT, SURF & seasons: Appearance-based long-term localization in outdoor environments. Robotics and Autonomous Systems, 58(2), 149-156.
Publicado
Cómo citar
Número
Sección
Licencia
Todos los contenidos de CULCYT se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento-No Comercial 4.0 Internacional” (CC-BY-NC). Puede consultar desde aquí la versión informativa de la licencia.
Los autores/as que soliciten publicar en esta revista, aceptan los términos siguientes: a) los/las autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra; y b) se permite y recomienda a los/las autores/as agregar enlaces de sus artículos en CULCYT en la página web de su institución o en la personal, debido a que ello puede generar intercambios interesantes y aumentar las citas de su obra publicada.