Dynamical behavior and control strategy of a dengue epidemic model

Autores/as

DOI:

https://doi.org/10.20983/culcyt.2024.3.2.2

Palabras clave:

System Dynamics (SD), conceptual model, dengue virus, mosquito control

Resumen

Mosquitoes of the species Aedes (Ae. aegypti or Ae. albopictus) can transmit Dengue, Chikungunya, Zika, and Yellow Fever. Of the people's mobility and increasing population density, diseases such as Dengue have been an epidemic in recent years, becoming a globally important health problem. Those responsible for creating vector control campaigns and medical staff are interested in identifying tools to predict the seasonal peak of the dengue outbreak and identify related climate factors that contribute to the increase in the number of mosquitoes. The purpose of this research is to simulate the behavior of the mosquito population with system dynamics. For simulation, the main variables entered are precipitation, temperature, and epidemiological week. The model is the first phase of a project that aims to provide a tool for simulating outbreaks of dengue with system dynamics, a basis for predicting the spread of the dengue.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Laura Valentina Bocanegra Villegas, Tecnológico Nacional de México / Instituto Tecnológico de Orizaba

Estudiante del Doctorado en Ciencias de la Ingeniería, Tecnológico Nacional de México / Instituto Tecnológico de Orizaba, Orizaba, Veracruz

Cuauhtémoc Sánchez Ramírez, Tecnológico Nacional de México / Instituto Tecnológico de Orizaba

Tecnológico Nacional de México / Instituto Tecnológico de Orizaba

Sandra Usaquén Perilla, Universidad del Valle

Universidad del Valle, Cali, Colombia

Universidad Militar Nueva Granada, Cajicá, Colombia.

Citas

B. Traoré, O. Koutou, and B. Sangaré, “A global mathematical model of malaria transmission dynamics with structured mosquito population and temperature variations,” Nonlinear Anal Real World Appl, vol. 53, 103081, 2020, doi: 10.1016/j.nonrwa.2019.103081.

H. Yeo, H. Z. Tan, Q. Tang, T. R. H. Tan, N. Puniamoorthy, and F. E. Rheindt, “Dense residential areas promote gene flow in dengue vector mosquito Aedes albopictus,” iScience, vol. 26, n.º 9, 107577, Sep. 2023, doi: 10.1016/J.ISCI.2023.107577.

K. D. Rosenberger et al., “Early diagnostic indicators of dengue versus other febrile illnesses in Asia and Latin America (IDAMS study): a multicentre, prospective, observational study,” Lancet Glob Health, vol. 11, n.º 3, pp. e361–e372, Mar. 2023, doi: 10.1016/S2214-109X(22)00514-9.

I. K. Lee et al., “In-hospital mortality predictors among hospitalized adults and those with chronic kidney disease with dengue,” J Microbiol Immunol Infect, vol. 56, n.º 5, pp. 996–1006, Oct. 2023, doi: 10.1016/J.JMII.2023.08.004.

PAHO/WHO, “Dengue.” Accessed: Aug. 25, 2024. [Online]. Available: https://www.paho.org/en/topics/dengue#info

L. M. Schwartz, M. E. Halloran, A. P. Durbin, and I. M. Longini, “The dengue vaccine pipeline: Implications for the future of dengue control,” Vaccine, vol. 33, n.º 29, pp. 3293–3298, 2015, doi: 10.1016/j.vaccine.2015.05.010.

J. Páez Chávez, T. Götz, S. Siegmund, and K. P. Wijaya, “An SIR-Dengue transmission model with seasonal effects and impulsive control,” Math Biosci, vol. 289, pp. 29–39, 2017, doi: 10.1016/j.mbs.2017.04.005.

OMS, “Dengue and severe dengue.” Accessed: Jun. 11, 2024. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue

PAHO/WHO, “National Dengue fever cases.” Accessed: Aug. 22, 2024. [Online]. Available: https://www3.paho.org/data/index.php/en/mnu-topics/indicadores-dengue-en/dengue-nacional-en/252-dengue-pais-ano-en.html

D. S. Shepard, E. A. Undurraga, Y. A. Halasa, and J. D. Stanaway, “The global economic burden of dengue: a systematic analysis,” Lancet Infect Dis, vol. 16, n.º 8, pp. 935–941, 2016, doi: 10.1016/S1473-3099(16)00146-8.

L. N. da Silva Oliveira, A. Itria, and E. C. Lima, “Cost of illness and program of dengue: A systematic review,” PLoS One, vol. 14, n.º 2, e0211401, Feb. 2019, doi: 10.1371/JOURNAL.PONE.0211401.

T. J. Hladish et al., “Projected Impact of Dengue Vaccination in Yucatán, Mexico,” PLoS Negl Trop Dis, vol. 10, n.º 5, 2016, doi: 10.1371/journal.pntd.0004661.

K. Liu and Y. Lou, “A periodic delay differential system for mosquito control with Wolbachia incompatible insect technique,” Nonlinear Anal Real World Appl, vol. 73, 103867, Oct. 2023, doi: 10.1016/J.NONRWA.2023.103867.

B. Y. Lee et al., “Economic Value of Dengue Vaccine in Thailand,” Am J Trop Med Hyg, vol. 84, n.º 5, pp. 764–772, May 2011, doi: 10.4269/AJTMH.2011.10-0624.

C. W. Morin, A. J. Monaghan, M. H. Hayden, R. Barrera, and K. Ernst, “Meteorologically Driven Simulations of Dengue Epidemics in San Juan, PR,” PLoS Negl Trop Dis, vol. 9, n.º 8, e0004002, 2015, doi: 10.1371/JOURNAL.PNTD.0004002.

C. Hettiarachchige, S. von Cavallar, T. Lynar, R. I. Hickson, and M. Gambhir, “Risk prediction system for dengue transmission based on high resolution weather data,” PLoS One, vol. 13, n.º 12, p. e0208203, Dec. 2018, doi: 10.1371/JOURNAL.PONE.0208203.

H. Qin et al., “Trading safety stock for service response time in inventory positioning,” Prod Oper Manag, 2022, doi: 10.1111/poms.13869.

H. M. Srivastava, R. Jan, A. Jan, W. Deebani, and M. Shutaywi, “Fractional-calculus analysis of the transmission dynamics of the dengue infection,” Chaos, vol. 31, n.º 5, May. 2021, doi: 10.1063/5.0050452.

R. Jain, S. Sontisirikit, S. Iamsirithaworn, and H. Prendinger, “Prediction of dengue outbreaks based on disease surveillance, meteorological and socio-economic data,” BMC Infect Dis, vol. 19, n.º 1, pp. 1–16, Mar. 2019, doi: 10.1186/s12879-019-3874-x.

R. Taghikhani and A. B. Gumel, “Mathematics of dengue transmission dynamics: Roles of vector vertical transmission and temperature fluctuations,” Infect Dis Model, vol. 3, pp. 266–292, 2018, doi: 10.1016/j.idm.2018.09.003.

M. Ferraguti et al., “Spatial distribution and temporal dynamics of invasive and native mosquitoes in a large Mediterranean city,” Sci. Total Environ., vol. 896, 165322, Oct. 2023, doi: 10.1016/J.SCITOTENV.2023.165322.

D. A. Ewing, C. A. Cobbold, B. V. Purse, M. A. Nunn, and S. M. White, “Modelling the effect of temperature on the seasonal population dynamics of temperate mosquitoes,” J Theor Biol, vol. 400, pp. 65–79, 2016, doi: 10.1016/j.jtbi.2016.04.008.

J. Chen et al., “Linking mathematical models and trap data to infer the proliferation, abundance, and control of Aedes aegypti,” Acta Trop, vol. 239, 106837, Mar. 2023, doi: 10.1016/J.ACTATROPICA.2023.106837.

S. Brailsford, R. Berchi, V. Angelis, and M. Mecoli, “System Dynamics models to assess the risk of mosquito-borne diseases and to evaluate control policies,” presented at the International Conference of the System Dynamics Society, vol. 1979, pp. 1–10, 2007.

NASA, “POWER | Data Access Viewer.” Accessed: Aug. 22, 2024. [Online]. Available: https://power.larc.nasa.gov/data-access-viewer/

Descargas

Publicado

2024-09-13

Cómo citar

[1]
L. V. Bocanegra Villegas, C. Sánchez Ramírez, y S. Usaquén Perilla, «Dynamical behavior and control strategy of a dengue epidemic model», Cult. Científ. y Tecnol., vol. 21, n.º 3, pp. 24–30, sep. 2024.