Amortiguadores regenerativos para sistemas de suspensión automotriz: Una revisión

Autores/as

DOI:

https://doi.org/10.20983/culcyt.2022.1.3.2

Resumen

En este trabajo se presenta una revisión exhaustiva de los diferentes tipos de amortiguadores regenerativos utilizados para mejorar la reducción del consumo de combustible y de las emisiones contaminantes (principalmente el CO2) en vehículos comerciales. En primera instancia, se describe la interacción entre el tren motriz y el sistema de suspensión automotriz, incluyendo los ciclos de velocidad de conducción como el enlace principal. Posteriormente, se presenta un esquema gráfico del proceso de regeneración de energía vibratoria mediante amortiguadores regenerativos, considerando el sistema de almacenamiento de energía. Además, se discuten los avances tecnológicos recientes de los diferentes tipos de amortiguadores regenerativos, sopesando principalmente la filosofía de diseño del mecanismo de rectificación de energía vibratoria. Finalmente, se presentan las conclusiones y tendencias futuras sobre las aplicaciones de estos dispositivos en diferentes disciplinas de la ingeniería.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

L. Pugi, M. Pagliai, A. Nocentini, G. Lutzemberger y A. Pretto, “Design of a hydraulic servo-actuation fed by a regenerative braking”, Appl. Energy, vol. 187, pp. 96-115, 2017, doi: 10.1016/j.apenergy.2016.11.047.

K. Itani, A. De Bernardinis, Z. Khatir y A. Jammal, “Comparative analysis of two hybrid energy storage systems used in a two front wheel driven electric vehicle during extreme start-up and regenerative braking operations”, Energy Convers. Manag., vol. 144, pp. 69-87, 2017, doi: 10.1016/j.enconman.2017.04.036.

L. Li, Y. Zhang, C. Yang, B. Yan y C. M. Martinez, “Model predictive control-based efficient energy recovery control strategy for regenerative braking system of hybrid electric bus”, Energy Convers. Manag., vol. 111, pp. 299-314, 2016, doi: 10.1016/j.enconman.2015.12.077.

D. Zhao, “Waste thermal energy harvesting from a convection-driven Rijke–Zhao thermo-acoustic-piezo system”, Energy Convers. Manag., vol. 66, pp. 87-97, 2013, doi: 10.1016/j.enconman.2012.09.025.

M. A. A. Abdelkareem et al., “Vibration energy harvesting in automotive suspension system: A detailed review”, Appl. Energy, vol. 229, no. jul., pp. 672-699, 2018, doi: 10.1016/j.apenergy.2018.08.030.

J. Zou, X. Guo, M. A. A. Abdelkareem, L. Xu y J. Zhang, “Modelling and ride analysis of a hydraulic interconnected suspension based on the hydraulic energy regenerative shock absorbers”, Mech. Syst. Signal Process., vol. 127, pp. 345-369, 2019, doi: 10.1016/j.ymssp.2019.02.047.

H. X. Zou et al., “Mechanical modulations for enhancing energy harvesting: Principles, methods and applications”, Appl. Energy, vol. 255, no. feb., 2019, doi: 10.1016/j.apenergy.2019.113871.

D. Shi, P. Pisu, L. Chen, S. Wang y R. Wang, “Control design and fuel economy investigation of power split HEV with energy regeneration of suspension”, Appl. Energy, vol. 182(C), pp. 576-589, 2016, doi: 10.1016/j.apenergy.2016.08.034.

ISO, “ISO 8608:2016 Mechanical vibration — Road surface profiles — Reporting of measured data”, ISO.org. https://www.iso.org/standard/71202.html (acceso mar. 20, 2022).

X. Xie y Q. Wang, “A mathematical model for piezoelectric ring energy harvesting technology from vehicle tires”, Int. J. Eng. Sci., vol. 94, pp. 113-127, 2015, doi: 10.1016/j.ijengsci.2015.05.004.

Z. Zhang et al., “A high-efficiency energy regenerative shock absorber using supercapacitors for renewable energy applications in range extended electric vehicle”, Appl. Energy, vol. 178, pp. 177-188, 2016, doi: 10.1016/j.apenergy.2016.06.054.

D. Karnopp, “Permanent Magnet Linear Motors Used as Variable Mechanical Dampers for Vehicle Suspensions”, Veh. Syst. Dyn., vol. 18, no. 4, pp. 187-200, 1989, doi: 10.1080/00423118908968918.

Y. Suda y T. Shiiba, “A New Hybrid Suspension System with Active Control and Energy Regeneration”, Veh. Syst. Dyn., vol. 24, supl. 1, pp. 641-654, 1996, doi: 10.1080/00423119608969226.

L. Zuo, B. Scully, J. Shestani y Y. Zhou, “Design and characterization of an electromagnetic energy harvester for vehicle suspensions”, Smart Mater. Struct., vol. 19, no. 4, pp. 1-10, 2010, doi: 10.1088/0964-1726/19/4/045003.

B. L. J. Gysen, T. P. J. Van Der Sande, J. J. H. Paulides y E. A. Lomonova, “Efficiency of a regenerative direct-drive electromagnetic active suspension”, en IEEE Trans. Veh. Technol., vol. 60, no. 4, pp. 1384-1393, may. 2011, doi: 10.1109/TVT.2011.2131160.

B. Ebrahimi, H. Bolandhemmat, M. B. Khamesee y F. Golnaraghi, “A hybrid electromagnetic shock absorber for active vehicle suspension systems”, Veh. Syst. Dyn., vol. 49, nos. 1-2, pp. 311-332, 2011, doi: 10.1080/00423111003602400.

E. Asadi, R. Ribeiro, M. B. Khamesee y A. Khajepour, “A new adaptive hybrid electromagnetic damper: modelling, optimization, and experiment”, Smart Mater. Struct., vol. 24, no. 7, pp. 1-14, 2015, doi: 10.1088/0964-1726/24/7/075003.

G. Hu, Y. Lu, S. Sun y W. Li, “Performance Analysis of a Magnetorheological Damper with Energy Harvesting Ability”, Shock Vib., vol. 2016, pp. 1-10, 2016, doi: 10.1155/2016/2959763.

L. Chen, D. Shi, R. Wang y H. Zhou, “Energy conservation analysis and control of hybrid active semiactive suspension with three regulating damping levels”, Shock Vib., vol. 2016, pp. 1-14, 2016, doi: 10.1155/2016/6196542.

C. Chen y W. -H. Liao, “A self-sensing magnetorheological damper with power generation”, Smart Mater. Struct., vol. 21, no. 2, pp. 1-14, 2012, doi: 10.1088/0964-1726/21/2/025014.

K. -M. Choi, H. -J. Jung, H. -J. Lee y S. -W. Cho, “Feasibility study of an MR damper-based smart passive control system employing an electromagnetic induction device”, Smart Mater. Struct., vol. 16, no. 6, pp. 2323-2329, 2007, doi: 10.1088/0964-1726/16/6/036.

Y. -T. Choi y N. M. Wereley, “Self-Powered Magnetorheological Dampers”, J. Vib. Acoust., vol. 131, no. 4, pp. 1-5, 2009, doi: 10.1115/1.3142882.

Z. Gao, S. Chen, Y. Zhao y Z. Liu, “Numerical evaluation of compatibility between comfort and energy recovery based on energy fl ow mechanism inside electromagnetic active suspension”, Energy, vol. 170, no. 5, pp. 521-536, 2019, doi: 10.1016/j.energy.2018.12.193.

R. Ding, R. Wang, X. Meng y L. Chen, “Energy consumption sensitivity analysis and energy-reduction control of hybrid electromagnetic active suspension”, Mech. Syst. Signal Process., vol. 134, no. 301, 2019, doi: 10.1016/j.ymssp.2019.106301.

M. -T. Duong, Y. -D. Chun, P. -W. Han, B. -G. Park, D. -J. Bang and J. -K. Lee, “Optimal Design of a Novel Single-Phase 8-Slot 8-Pole Tubular Electromagnetic Shock Absorber to Harvest Energy”, en IEEE Trans. Ind. Electron., vol. 67, no. 2, pp. 1180-1190, feb. 2020, doi: 10.1109/TIE.2019.2898591.

Z. Jin-qiu, P. Zhi-zhao, Z. Lei y Z. Yu, “A Review on Energy-Regenerative Suspension Systems for Vehicles”, en Proceedings of the World Congress on Engineering, 2013, vol. III, pp. 3-6, ISBN: 978-988-19252-9-9.

L. Zuo y X. Tang, “Large-scale vibration energy harvesting”, J. Intell. Mater. Syst. Struct., vol. 24, no. 11, pp. 1405–1430, 2013, doi: 10.1177/1045389X13486707.

B. Lafarge, S. Grondel, C. Delebarre, O. Curea y C. Richard, “Linear electromagnetic energy harvester system embedded on a vehicle suspension : From modeling to performance analysis”, Energy, vol. 225(C), pp. 1-16, 2021, doi: 10.1016/j.energy.2021.119991.

R. Zhou et al., “Experimental validations of a magnetic energy-harvesting suspension and its potential application for self-powered sensing”, Energy, vol. 239(C), pp. 1-13, 2022, doi: 10.1016/j.energy.2021.122205.

Z. Zhang, X. Zhang, Y. Rasim, C. Wang, B. Du y Y. Yuan, “Design, modelling and practical tests on a high-voltage kinetic energy harvesting (EH) system for a renewable road tunnel based on linear alternators”, Appl. Energy, vol. 164, pp. 152-161, 2016, doi: 10.1016/j.apenergy.2015.11.096.

K. Kecik, A. Mitura, S. Lenci y J. Warminskia, “Energy harvesting from a magnetic levitation system”, Int. J. Non. Linear. Mech., vol. 94, pp. 200-206, 2017, doi: 10.1016/j.ijnonlinmec.2017.03.021.

C. Wei y X. Jing, “A comprehensive review on vibration energy harvesting: Modelling and realization”, Renew. Sustain. Energy Rev., vol. 74, pp. 1-18, 2017, doi: 10.1016/j.rser.2017.01.073.

A. Haroun, I. Yamada y S. Warisawa, “Study of electromagnetic vibration energy harvesting with free/impact motion for low frequency operation”, J. Sound Vib., vol. 349, pp. 389-402, 2015, doi: 10.1016/j.jsv.2015.03.048.

Z. Liu, X. Wang, S. Ding, R. Zhang y L. Mcnabb, “A new concept of speed amplified nonlinear electromagnetic vibration energy harvester through fixed pulley wheel mechanisms and magnetic springs”, Mech. Syst. Signal Process., vol. 126, pp. 305-325, 2019, doi: 10.1016/j.ymssp.2019.02.010.

M. Gao, Y. Wang, Y. Wang y P. Wang, “Experimental investigation of non-linear multi-stable electromagnetic- induction energy harvesting mechanism by magnetic levitation oscillation”, Appl. Energy, vol. 220, pp. 856-875, 2018, doi: 10.1016/j.apenergy.2018.03.170.

S. Zhu, W. A. Shen y Y. L. Xu, “Linear electromagnetic devices for vibration damping and energy harvesting: Modeling and testing”, Eng. Struct., vol. 34, pp. 198-212, 2012, doi: 10.1016/j.engstruct.2011.09.024.

C. Wei y H. Taghavifar, “A novel approach to energy harvesting from vehicle suspension system: Half-vehicle model”, Energy, vol. 134, pp. 279-288, 2017, doi: 10.1016/j.energy.2017.06.034.

L. B. Zhang, H. L. Dai, A. Abdelkefi, S. X. Lin y L. Wang, “Theoretical modeling, wind tunnel measurements, and realistic environment testing of galloping-based electromagnetic energy harvesters”, Appl. Energy, vol. 254(C), 2019, doi: 10.1016/j.apenergy.2019.113737.

M. -L. Seol, S. -B. Jeon, J. -W. Han y Y. -K. Choi, “Ferrofluid-based triboelectric-electromagnetic hybrid generator for sensitive and sustainable vibration energy harvesting”, Nano Energy, vol. 31, pp. 233-238, 2017, doi: 10.1016/j.nanoen.2016.11.038.

A. Tonoli, N. Amati, J. G. Detoni, R. Galluzzi y E. Gasparin, “Modelling and validation of electromechanical shock absorbers”, Veh. Syst. Dyn., vol. 51, no. 8, pp. 1186-1199, 2013, doi: 10.1080/00423114.2013.789538.

Y. Kawamoto, Y. Suda, H. Inoue y T. Kondo, “Modeling of Electromagnetic Damper for Automobile Suspension”, J. Syst. Des. Dyn., vol. 1, no. 3, pp. 524-535, 2007, doi: 10.1299/jsdd.1.524.

N. Amati, A. Festini y A. Tonoli, “Design of electromagnetic shock absorbers for automotive suspensions”, Veh. Syst. Dyn., vol. 49, no. 12, pp. 1913-1928, 2011, doi: 10.1080/00423114.2011.554560.

M. C. Smith, “The Inerter: A Retrospective”, Annu. Rev. Control. Robot. Auton. Syst., vol. 3, no. 1, pp. 361-391, 2020, doi: 10.1146/annurev-control-053018-023917.

K. E. Graves, P. G. Iovenitti y D. Toncich, “Electromagnetic regenerative damping in vehicle suspension systems”, Int. J. Veh. Des., vol. 24, no. 2/3, pp. 182-197, 2000, doi: 10.1504/IJVD.2000.005181.

M. Montazeri-Gh y O. Kavianipour, “Investigation of the passive electromagnetic damper”, Acta Mech., vol. 223, no. 12, pp. 2633-2646, 2012, doi: 10.1007/s00707-012-0735-8.

X. Wang, Frequency Analysis of Vibration Energy Harvesting Systems. Estados Unidos de América: Elsevier, 2016, ISBN: 978-0-12-802321-1.

G. Zhang, J. Cao y F. Yu, “Design of active and energy-regenerative controllers for DC-motor-based suspension”, Mechatronics, vol. 22, no. 8, pp. 1124-1134, 2012, doi: 10.1016/j.mechatronics.2012.09.007.

L. Pires, M. C. Smith, N. E. Houghton y R. A. McMahon, “Design trade-offs for energy regeneration and control in vehicle suspensions”, Int. J. Control, pp. 1-18, 2013, doi: 10.1080/00207179.2013.830197.

J. Yin, X. Chen, J. Li y L. Wu, “Investigation of equivalent unsprung mass and nonlinear features of electromagnetic actuated active suspension”, Shock Vib., vol. 2015, pp. 1-8, 2015, doi: 10.1155/2015/624712.

B. Huang, C. -Y. Hsieh, F. Golnaraghi y M. Moallem, “Development and optimization of an energy-regenerative suspension system under stochastic road excitation”, J. Sound Vib., vol. 357, pp. 16-34, 2015, doi: 10.1016/j.jsv.2015.07.004.

S. Li, J. Xu, X. Pu, T. Tao y X. Mei, “A novel design of a damping failure free energy-harvesting shock absorber system”, Mech. Syst. Signal Process., vol. 132, pp. 640-653, 2019, doi: 10.1016/j.ymssp.2019.07.004.

S. Li, J. Xu, X. Pu, T. Tao, H. Gao y X. Mei, “Energy-Harvesting Variable / Constant Damping Suspension”, Energy, vol. 189, 2019, doi: 10.1016/j.energy.2019.116199.

L. Xie, J. Li, X. Li, L. Huang y S. Cai, “Damping-tunable energy-harvesting vehicle damper with multiple controlled generators: Design , modeling and experiments”, Mech. Syst. Signal Process., vol. 99, pp. 859-872, 2018, doi: 10.1016/j.ymssp.2017.07.005.

L. Xie, J. Li, S. Cai y X. Li, “Electromagnetic Energy-Harvesting Damper With Multiple Independently Controlled Transducers: On-Demand Damping and Optimal Energy Regeneration”, en IEEE ASME Trans Mechatron, vol. 22, no. 6, pp. 2705-2713, dic. 2017, doi: 10.1109/TMECH.2017.2758783.

Z. Wang, T. Zhang, Z. Zhang, Y. Yuan y Y. Liu, “A high-efficiency regenerative shock absorber considering twin ball screws transmissions for application in range-extended electric vehicles”, Energy Built Environ., vol. 1, no. 1, pp. 36-49, 2019, doi: 10.1016/j.enbenv.2019.09.004.

X. -X. Bai, W. -M. Zhong, Q. Zou, A. -D. Zhu y J. Sun, “Principle, design and validation of a power-generated magnetorheological energy absorber with velocity self-sensing capability”, Smart Mater. Struct., vol. 27, no. 7, pp. 1-18, 2018, doi: 10.1088/1361-665X/aac7ef.

Y. Yang, Y. Pian y Q. Liu, “Design of energy harvester using rotating motion rectifier and its application on bicycle”, Energy, vol. 179, pp. 222-231, 2019, doi: 10.1016/j.energy.2019.05.036.

Z. Li, L. Zuo, G. Luhrs, L. Lin y Y. -x. Qin, “Electromagnetic Energy-Harvesting Shock Absorbers: Design, Modeling, and Road Tests”, en IEEE Trans. Veh. Technol., vol. 62, no. 3, pp. 1065-1074, mar. 2013, doi: 10.1109/TVT.2012.2229308.

Z. Li, L. Zuo, J. Kuang y G. Luhrs, “Energy-harvesting shock absorber with a mechanical motion rectifier”, Smart Mater. Struct., vol. 22, no. 2, pp. 1-10, 2013, doi: 10.1088/0964-1726/22/2/025008.

S. Guo, Y. Liu, L. Xu, X. Guo y L. Zuo, “Performance evaluation and parameter sensitivity of energy-harvesting shock absorbers on different vehicles”, Veh. Syst. Dyn., vol. 54, no. 7, pp. 1-25, 2016, doi: 10.1080/00423114.2016.1174276.

Z. Zhang et al., “Corrigendum to ‘A high-efficiency energy regenerative shock absorber using supercapacitors for renewable energy applications in range extended electric vehicle’ [Appl. Energy 178 (2016) 177-188]”, Appl. Energy, vol. 254, 2019, doi: 10.1016/j.apenergy.2019.113634.

X. Zhang, Z. Zhang, H. Pan, W. Salman, Y. Yuan y Y. Liu, “A portable high-efficiency electromagnetic energy harvesting system using supercapacitors for renewable energy applications in railroads”, Energy Convers. Manag., vol. 118, pp. 287-294, 2016, doi: 10.1016/j.enconman.2016.04.012.

H. Wang, C. He, S. Lv y H. Sun, “A new electromagnetic vibrational energy harvesting device for swaying cables”, Appl. Energy, vol. 228(C), pp. 2448–2461, 2018, doi: 10.1016/j.apenergy.2018.07.059.

R. Sabzehgar, A. Maravandi y M. Moallem, “Energy Regenerative Suspension Using an Algebraic Screw Linkage Mechanism”, en IEEE/ASME Trans. Mechatronics, vol. 19, no. 4, pp. 1251-1259, ag. 2014, doi: 10.1109/TMECH.2013.2277854.

A. Maravandi y M. Moallem, “Regenerative Shock Absorber Using a Two-Leg Motion Conversion Mechanism”, en IEEE/ASME Trans. Mechatronics, vol. 20, no. 6, pp. 2853-2861, dic. 2015, doi: 10.1109/TMECH.2015.2395437.

A. Syuhri, W. Hadi y S. N. H. Syuhri, “Damping properties and energy evaluation of a regenerative shock absorber”, Int. J. Interact. Des. Manuf., vol. 12, pp. 1385-1397, 2017, doi: 10.1007/s12008-017-0440-x.

R. Zhang y X. Wang, “Parameter study and optimization of a half-vehicle suspension system model integrated with an arm-teeth regenerative shock absorber using Taguchi method”, Mech. Syst. Signal Process., vol. 126, pp. 65-81, 2019, doi: 10.1016/j.ymssp.2019.02.020.

R. Zhang, X. Wang, E. Shami, S. John, L. Zuo y C. Wang, “A novel indirect-drive regenerative shock absorber for energy harvesting and comparison with a conventional direct-drive regenerative shock absorber”, Appl. Energy, vol. 229, pp. 111-127, 2018, doi: 10.1016/j.apenergy.2018.07.096.

R. Zhang, L. Zhao, X. Qiu, H. Zhang y X. Wang, “A comprehensive comparison of the vehicle vibration energy harvesting abilities of the regenerative shock absorbers predicted by the quarter , half and full vehicle suspension system models”, Appl. Energy, vol. 272, 2020, doi: 10.1016/j.apenergy.2020.115180.

M. A. A. Abdelkareem, R. Zhang, X. Jing, X. Wang y M. K. A. Ali, “Characterization and implementation of a double-sided arm-toothed indirect-drive rotary electromagnetic energy-harvesting shock absorber in a full semi-trailer truck suspension platform”, Energy, vol. 239, parte A, 2022, doi: 10.1016/j.energy.2021.121976.

W. Salman et al., “A high-efficiency energy regenerative shock absorber using helical gears for powering low-wattage electrical device of electric vehicles”, Energy, vol. 159, pp. 361-372, 2018, doi: 10.1016/j.energy.2018.06.152.

P. Múčka, “Energy-harvesting potential of automobile suspension”, Veh. Syst. Dyn., vol. 54, no. 12, pp. 1651-1670, 2016, doi: 10.1080/00423114.2016.1227077.

H. Li et al., “A high-efficiency energy regenerative shock absorber for powering auxiliary devices of new energy driverless buses”, Appl. Energy, vol. 295, 2021, doi: 10.1016/j.apenergy.2021.117020.

A. Ali, L. Qi, T. Zhang, H. Li, A. Azam y Z. Zhang, “Design of novel energy-harvesting regenerative shock absorber using barrel cam follower mechanism to power the auxiliaries of a driverless electric bus”, Sustain. Energy Technol. Assessments, vol. 48, 2021, doi: 10.1016/j.seta.2021.101565.

BioAge Group, “Audi developing electromechanical rotary dampers; potential for energy recuperation from suspension; 48V”, GreenCarCongress.com. https://www.greencarcongress.com/2016/08/audi-developing-electromechanical-rotary-dampers-potential-for-energy-recuperation-from-suspension-4.html (acceso jul. 15, 2020).

R. Galluzzi, S. Circosta, N. Amati y A. Tonoli, “Rotary regenerative shock absorbers for automotive suspensions”, Mechatronics, vol. 77, ag. 2021, doi: 10.1016/j.mechatronics.2021.102580.

J. Mi, L. Xu, S. Guo, L. Meng y M. A. A. Abdelkareem, “Energy harvesting potential comparison study of a novel railway vehicle bogie system with the hydraulic-electromagnetic energy-regenerative shock absorber”, en Proc. 2017 Jt. Rail Conf., Filadelfia, Pensilvania, Estados Unidos, abr. 4-7, 2017, doi: 10.1115/JRC2017-2241.

K. Ahmad y M. Alam, “Design and Simulated Analysis of Regenerative Suspension System with Hydraulic Cylinder, Motor and Dynamo”, SAE Tech. Pap., 2017, doi:10.4271/2017-01-1284.

H. Zhang, X. Guo, L. Xu, S. Hu y Z. Fang, “Parameters analysis of hydraulic-electrical energy regenerative absorber on suspension performance”, Adv. Mech. Eng., vol. 6, 2014, doi: 10.1155/2014/836502.

Z. Fang, X. Guo, L. Xu y H. Zhang, “Experimental study of damping and energy regeneration characteristics of a hydraulic electromagnetic shock absorber”, Adv. Mech. Eng., vol. 5, pp. 1-9, 2013, doi: 10.1155/2013/943528.

C. Li y P. W. Tse, “Fabrication and testing of an energy-harvesting hydraulic damper”, Smart Mater. Struct., vol. 22, no. 6, 2013, doi: 10.1088/0964-1726/22/6/065024.

C. Li, R. Zhu, M. Liang y S. Yang, “Integration of shock absorption and energy harvesting using a hydraulic rectifier”, J. Sound Vib., vol. 333, no. 17, pp. 3904-3916, 2014, doi: 10.1016/j.jsv.2014.04.020.

Y. Zhang, X. Zhang, M. Zhan, K. Guo, F. Zhao y Z. Liu, “Study on a novel hydraulic pumping regenerative suspension for vehicles”, J. Franklin Inst., vol. 352, no. 2, pp. 485-499, 2015, doi: 10.1016/j.jfranklin.2014.06.005.

Y. Zhang, H. Chen, K. Guo, X. Zhang y S. E. Li, “Electro-hydraulic damper for energy harvesting suspension: Modeling, prototyping and experimental validation”, Appl. Energy, vol. 199, pp. 1-12, 2017, doi: 10.1016/j.apenergy.2017.04.085.

R. Galluzzi et al., “Regenerative Shock Absorbers and the Role of the Motion Rectifier”, SAE Tech. Pap., 2016, doi: 10.4271/2016-01-1552.

R. Galluzzi, Y. Xu, N. Amati y A. Tonoli, “Optimized design and characterization of motor-pump unit for energy- regenerative shock absorbers”, Appl. Energy, vol. 210, pp. 16-27, 2018, doi: 10.1016/j.apenergy.2017.10.100.

J. Zou et al., “Simulation Research of a Hydraulic Interconnected Suspension Based on a Hydraulic Energy Regenerative Shock Absorber”, SAE Tech. Pap., 2018, doi: 10.4271/2018-01-0582.

J. Zou, X. Guo, L. Xu, G. Tan, C. Zhang y J. Zhang, “Design, Modeling y Analysis of a Novel Hydraulic Energy-Regenerative Shock Absorber for Vehicle Suspension”, Shock Vib., vol. 2017, 2017, doi: 10.1155/2017/3186584.

M. Peng, X. Guo, J. Zou y C. Zhang, “Simulation Study on Vehicle Road Performance with Hydraulic Electromagnetic Energy-Regenerative Shock Absorber”, SAE Tech. Pap., 2016, doi: 10.4271/2016-01-1550.

B. Qin, Y. Chen, Z. Chen y L. Zuo, “Modeling, bench test and ride analysis of a novel energy-harvesting hydraulically interconnected suspension system”, Mech. Syst. Signal Process., vol. 166, pp. 1-21, 2022, doi: 10.1016/j.ymssp.2021.108456.

BioAge Group, “ZF and start-up Levant Power partnering on first fully active, regenerative suspension for automobiles”. GreenCarCongress.com. https://www.greencarcongress.com/2013/08/20130828-zflevant.html (acceso jul. 15, 2020).

M. A. A. Abdelkareem, L. Xu, X. Jing, A. B. M. Eldaly, J. Zou y M. K. A. Ali, “Field measurements of the harvestable power potentiality of an off-road sport-utility vehicle”, Measurement, vol. 179, 2021, doi: 10.1016/j.measurement.2021.109381.

M. A. A. Abdelkareem et al., “Energy harvesting sensitivity analysis and assessment of the potential power and full car dynamics for different road modes”, Mech. Syst. Signal Process., vol. 110, pp. 307-332, 2018, doi: 10.1016/j.ymssp.2018.03.009.

Descargas

Publicado

2022-04-04

Cómo citar

Barredo Hernández, E., Mendoza-Larios, J. G., Maldonado-Bravo, I. A., Mayén-Chaires, J., & Mazón-Valadez, C. (2022). Amortiguadores regenerativos para sistemas de suspensión automotriz: Una revisión. Cultura Científica Y Tecnológica, 19(1), 1–20. https://doi.org/10.20983/culcyt.2022.1.3.2

Número

Sección

Artículos de revisión