Consideraciones en el diseño de robots para la atención médica en el mundo post COVID-19
DOI:
https://doi.org/10.20983/culcyt.2022.1.3.3Palabras clave:
Robots de servicio, Diseño de producto, Equipos biomédicos, Covid-19, Mundo post-covidResumen
A finales de 2019, la pandemia de COVID-19 se extendió rápidamente por todo el mundo. Como resultado de las dificultades derivadas de esta situación sanitaria emergente, se propuso utilizar robots en áreas médicas específicas. A partir de esto, el sector médico mundial aumentó el uso de robots de servicio para automatizar tareas repetitivas y riesgosas, así como para el transporte, almacenaje, entrega de alimentos, medicamentos y suministros. Sin embargo, la pandemia forzó la implementación de nuevos protocolos de interacción con los que se puso en evidencia el desarrollo incipiente de tales sistemas, demostrando su muy poca capacidad para hacer frente a las necesidades que conlleva la actual situación. En este artículo se presentan algunas consideraciones para la manufactura de sistemas, de acuerdo a criterios de diseño de productos biomédicos. Finalmente, se mencionan algunos problemas y retos que enfrentarán los desarrollos robóticos médicos en el futuro post pandemia.
Descargas
Citas
J. Bharatharaj, L. Huang, C. Krägeloh, M. R. Elara y A. Al-Jumaily, “Social engagement of children with autism spectrum disorder in interaction with a parrot-inspired therapeutic robot”, Procedia Comput. Sci., vol. 133, pp. 368-376, 2018, doi: 10.1016/j.procs.2018.07.045.
M. Hii, P. Courtney y P. Royall, “An Evaluation of the Delivery of Medicines Using Drones”, Drones, vol. 3, no. 3, jun. 2019, doi: 10.3390/drones3030052.
J. Bacik, F. Durovsky, M. Biros, K. Kyslan, D. Perdukova y S. Padmanaban, “Pathfinder–Development of Auto-mated Guided Vehicle for Hospital Logistics”, IEEE Access, vol. 5, pp. 26892-26900, 2017, doi: 10.1109/ACCESS.2017.2767899.
C. G. Rodriguez-Gonzalez, A. Herranz-Alonso, V. Escudero-Vilaplana, M. A. Ais-Larisgoitia, I. Iglesias-Peinado y M. Sanjurjo-Saez, “Robotic dispensing improves patient safety, inventory management, and staff satisfaction in an outpatient hospital pharmacy”, J Eval Clin Pract, vol. 25, no. 1, pp. 28-35, feb. 2019, doi: 10.1111/jep.13014.
T. Bányai, I. Maral, B. Illés, Á. Bányai y P. Tamás, “Optimization of Operation Strategy for Collection Systems of Biohazard Wastes in Hospitals Based on Autonomous Robots: A Heuristic Approach”, AJRCoS, pp. 33-43, jun. 2020, doi: 10.9734/ajrcos/2020/v5i430142.
L. A. Pineda, A. Rodríguez, G. Fuentes, C. Rascon y I. V. Meza, “Concept and Functional Structure of a Service Robot”, Int. J. Adv. Robot. Syst., vol. 12, no. 2, feb. 2015, doi: 10.5772/60026.
J. Savage-Carmona, L. E. Sucar-Succar, L. A. Pineda-Cortés, M. Matamoros, D. A. Rosenblueth y M. Negrete, “Robots de Servicio”, en Robótica de Servicio, E. Sucar y Y. Hernández, eds. México: Academia Mexicana de Computación, A.C., 2017.
A. Ghaffari, I. McGill y A. Ardakani, “Trends in COVID-19 diagnostic test development”, BioProcess Int., vol. 18, no. 6, pp. 34-45, 2020.
S. Manzoor et al., “Ontology-Based Knowledge Representation in Robotic Systems: A Survey Oriented toward Applications”, Applied Sciences, vol. 11, no. 10, may. 2021, doi: 10.3390/app11104324.
K. Severinson-Eklundh, A. Green y H. Hüttenrauch, “Social and collaborative aspects of interaction with a service robot”, Rob Auton Syst, vol. 42, no. 3-4, pp. 223-234, mar. 2003, doi: 10.1016/S0921-8890(02)00377-9.
G. Brewka, “Artificial intelligence—a modern approach by Stuart Russell and Peter Norvig, Prentice Hall. Series in Artificial Intelligence, Englewood Cliffs, NJ”, Knowl. Eng. Rev., vol. 11, no. 1, pp. 78-79, mar. 1996, doi: 10.1017/S0269888900007724.
I. H. Suh, G. H. Lim, W. Hwang, H. Suh, J. -H. Choi y Y. -T. Park, “Ontology-based multi-layered robot knowledge framework (OMRKF) for robot intelligence”, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007, pp. 429-436, doi: 10.1109/IROS.2007.4399082.
Z. Li, P. Moran, Q. Dong, R. J. Shaw y K. Hauser, “Development of a tele-nursing mobile manipulator for remote care-giving in quarantine areas”, 2017 IEEE International Conference on Robotics and Automation (ICRA), 2017, pp. 3581–3586, doi: 10.1109/ICRA.2017.7989411.
“temi - The Personal Robot”. Robotemi.com. https://www.robotemi.com/ (consultado sept. 2, 2021).
G. Yang et al., “Keep Healthcare Workers Safe: Application of Teleoperated Robot in Isolation Ward for COVID-19 Prevention and Control”, Chin. J. Mech. Eng., vol. 33, no. 1, dic. 2020, doi: 10.1186/s10033-020-00464-0.
“Conoce a RoomieBot”. Roomiebot.io. http://www.roomiebot.io/roomiebot/ (consultado sept. 23, 2021).
A. Luévano, “RoomieBot COVID-19”. Roomie-it.org. https://roomie-it.org/robotics/book-illustration-series/ (consultado sept. 6, 2021).
H.-W. Huang et al., “Agile mobile robotic platform for contactless vital signs monitoring”, preprint, 2020. doi: 10.36227/techrxiv.12811982.v1.
“Anti Epidemic Solution”, UBTECH. https://starwars.ubtrobot.com/products/anti-epidemic-solution?ls=en (consultado sept. 2, 2021).
“Misty II: A Partner in COVID-19 Safety and Wellness”, MISTY ROBOTICS. https://www.mistyrobotics.com/use-cases/robot-for-covid-19-coronavirus-safety-wellness/ (consultado sept. 2, 2021).
“Hospital 4.0: KUKA lab robots sort up to 3,000 blood samples per day”. KUKA. https://www.kuka.com/en-de/industries/solutions-database/2020/03/hospital-4-0_kuka-lab-robots-sort-blood-samples (consultado sept. 2, 2021).
“ABB robots accelerate COVID-19 vaccine development in Thailand”. ABB. https://new.abb.com/news/detail/72021/abb-robots-accelerate-covid-19-vaccine-development-in-thailand (consultado sept. 2, 2021).
“The Cleveland Clinic’s Underground Robots Assist With Medical Waste”. Ideastream Public Media. https://www.ideastream.org/news/the-cleveland-clinics-underground-robots-assist-with-medical-waste (consultado sept. 2, 2021).
“Lifeline Robotics”, Lifeline Robotics. https://www.lifelinerobotics.com (consultado sept. 2, 2021).
C. Jinadatha, R. Quezada, T. W. Huber, J. B. Williams, J. E. Zeber y L. A. Copeland, “Evaluation of a pulsed-xenon ultraviolet room disinfection device for impact on contamination levels of methicillin-resistant Staphylococcus aureus”, BMC Infect Dis, vol. 14, no. 1, 2014, doi: 10.1186/1471-2334-14-187.
“UVD - Case”. UVO ROBOTS. http://uvd.blue-ocean-robotics.com/italy (consultado sept. 23, 2021).
“Akara Robotics Turns TurtleBot Into Autonomous UV Disinfecting Robot”. IEEE Spectrum. https://spectrum.ieee.org/akara-robotics-turtlebot-autonomous-uv-disinfecting-robot (consultado sept. 2, 2021).
“CSAIL robot disinfects Greater Boston Food Bank”.MIT News On Campus and Around the World. https://news.mit.edu/2020/csail-robot-disinfects-greater-boston-food-bank-covid-19-0629 (consultado sept. 23, 2021).
“Geek+ launches two new disinfection robots”. Geek+. https://blog.geekplus.com/company/news-center/geek-launches-two-new-disinfection-robots (consultado sept. 2, 2021).
“Aobo Information Technology Co., Ltd.-Professional production of service robots”. AoBoTechnology. http://www.aoborobot.com/en/robot-fig-en/penwubanxiaodubenben-fig.html (consultado sept. 2, 2021).
“Spray disinfection robot_Shenzhen all intelligent robot technology Co., Ltd”. AItech.com. http://www.ai-aitech.com/Sterilization-robot (consultado sept. 2, 2021).
“Keenon Disinfection Robot M2-Keenon Robotics”. KEENON. https://www.keenonrobot.com/EN/Product/pro3.html (consultado sept. 2, 2021).
T. Fong, I. Nourbakhsh y K. Dautenhahn, “A survey of socially interactive robots”, Rob Auton Syst, vol. 42, no. 3-4, pp. 143-166, mar. 2003, doi: 10.1016/S0921-8890(02)00372-X.
A. Henschel, R. Hortensius y E. S. Cross, “Social Cognition in the Age of Human–Robot Interaction”, Trends Neurosci., vol. 43, no. 6, pp. 373-384, jun. 2020, doi: 10.1016/j.tins.2020.03.013.
D. Feil-Seifer, K. S. Haring, S. Rossi, A. R. Wagner y T. Williams, “Where to Next? The Impact of COVID-19 on Human-Robot Interaction Research”, J. Hum.-Robot Interact., vol. 10, no. 1, pp. 1-7, feb. 2021, doi: 10.1145/3405450.
“COVID-19 Archives”, PAL Robotics Blog. https://blog.pal-robotics.com/tag/covid-19/ (consultado sept. 23, 2021).
palrobot, “ARI - PAL Robotics: Leading service robotics”, PAL Robotics. https://pal-robotics.com/robots/ari/ (consultado sept. 23, 2021).
“UN sends five robots to Rwanda to detect coronavirus”, Robotics & Automation News, jun. 12, 2020. https://roboticsandautomationnews.com/2020/06/12/un-sends-five-robots-to-rwanda-to-detect-coronavirus/33036/ (consultado sept. 2, 2021).
“Moxi”, Diligent Robotics. https://www.diligentrobots.com/moxi (consultado sept. 2, 2021).
P. H. King R. C. Fries y A. T. Johnson, Design of Biomedical Devices and Systems, 4.a ed. Boca Ratón: Taylor & Francis, 2018, doi: 10.1201/9780429434792.
ISO, “ISO 9241-11:2018”, ISO.org. https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/06/35/63500.html (consultado sept. 2, 2021).
D. van Eijk, J. van Kuijk, F. Hoolhorst, C. Kim, C. Harkema y S. Dorrestijn, “Design for Usability; practice-oriented research for user-centered product design”, Work, vol. 41, no. supl. 1, pp. 1008-1015, 2012, doi: 10.3233/WOR-2012-1010-1008.
M. Orshansky, S. R. Nassif y D. S. Boning, Design for manufacturability and statistical design: a comprehensive approach. Nueva York - Londres: Springer, 2007.
L. W. McKeen, “Plastics Used in Medical Devices”, en Handbook of Polymer Applications in Medicine and Medical Devices, K. Modjarrad y S. Ebnesajjad, eds., Elsevier, 2014, pp. 21-53, doi: 10.1016/B978-0-323-22805-3.00003-7.
C. S. Frandsen, M. M. Nielsen, A. Chaudhuri, J. Jayaram y K. Govindan, “In search for classification and selection of spare parts suitable for additive manufacturing: a literature review”, Int. J. Prod. Res., vol. 58, no. 4, pp. 970-996, feb. 2020, doi: 10.1080/00207543.2019.1605226.
C. M. González-Henríquez, M. A. Sarabia-Vallejos y J. Rodriguez-Hernandez, “Polymers for additive manufacturing and 4D-printing: Materials, methodologies, and biomedical applications”, Prog. Polym. Sci., vol. 94, pp. 57-116, jul. 2019, doi: 10.1016/j.progpolymsci.2019.03.001.
E. Livingston, A. Desai y M. Berkwits, “Sourcing Personal Protective Equipment During the COVID-19 Pandemic”, JAMA, vol. 323, no. 19, 2020, doi: 10.1001/jama.2020.5317.
P. Wady et al., “Effect of ionising radiation on the mechanical and structural properties of 3D printed plastics”, Addit Manuf, vol. 31, 2020, doi: 10.1016/j.addma.2019.100907.
T. A. M. Valente, D. M. Silva, P. S. Gomes, M. H. Fernandes, J. D. Santos y V. Sencadas, “Effect of Sterilization Methods on Electrospun Poly(lactic acid) (PLA) Fiber Alignment for Biomedical Applications”, ACS Appl. Mater. Interfaces, vol. 8, no. 5, pp. 3241-3249, feb. 2016, doi: 10.1021/acsami.5b10869.
J. L. Cadnum, D. Li, S. N. Redmond, A. R. John, B. Pearlmutter y C. Donskey, “Effectiveness of Ultraviolet-C Light and a High-Level Disinfection Cabinet for Decontamination of N95 Respirators”, Pathog. Immun., vol. 5, no. 1, 2020, doi: 10.20411/pai.v5i1.372.
J. Ma, G. E. O. Kremer y C. D. Ray, “A comprehensive end-of-life strategy decision making approach to handle uncertainty in the product design stage”, Res Eng Design, vol. 29, no. 3, pp. 469-487, jul. 2018, doi: 10.1007/s00163-017-0277-0.
M. Wächter, H. Hoffmann y A. C. Bullinger, “Towards an Engineering Process to Design Usable Tangible Human-Machine Interfaces”, en Proceedings of the 20th Congress of the International Ergonomics Association (IEA 2018), vol. 825, 2019, pp. 136-147, doi: 10.1007/978-3-319-96068-5_15.
M. E. Wiklund y S. B. Wilcox, Designing usability into medical products. Boca Ratón: CRC Press, 2005.
ISO, “ISO 10993-1:2018”, ISO.org. https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/06/89/68936.html (consultado sept. 23, 2021).
ISO, “ISO 13482:2014”, ISO.org. https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/38/53820.html (consultado sept. 2, 2021).
M. E. Reyes, I. V. Meza y L. A. Pineda, “Robotics facial expression of anger in collaborative human–robot interaction”, Int. J. Adv. Robot. Syst., vol. 16, no. 1, 2019, doi: 10.1177/1729881418817972.
M. A. Goodrich y A. C. Schultz, “Human-Robot Interaction: A Survey”, Found. Trends Hum.-Comput. Interact., vol. 1, no. 3, pp. 203–275, 2007, doi: 10.1561/1100000005.
T. Nomura, T. Suzuki, T. Kanda y K. Kato, “Measurement of negative attitudes toward robots”, Interact. Stud., vol. 7, no. 3, pp. 437-454, nov. 2006, doi: 10.1075/is.7.3.14nom.
M. Mori, K. MacDorman y N. Kageki, “The Uncanny Valley [From the Field]”, en IEEE Robot. Automat. Mag., vol. 19, no. 2, pp. 98-100, jun. 2012, doi: 10.1109/MRA.2012.2192811.
R. Florida, A. Rodríguez-Pose y M. Storper, “Cities in a post-COVID world”, Urban Stud, jun. 2021, doi: 10.1177/00420980211018072.
S. Sharfuddin, “The world after Covid-19”, The Round Table, vol. 109, no. 3, pp. 247-257, may. 2020, doi: 10.1080/00358533.2020.1760498.
M. S. Kaiser, S. Al Mamun, M. Mahmud y M. H. Tania, “Healthcare Robots to Combat COVID-19”, en COVID-19: Prediction, Decision-Making, and its Impacts, K. C. Santosh y A. Joshi, eds., Singapur: Springer Singapore, 2021, vol. 60, pp. 83-97, doi: 10.1007/978-981-15-9682-7_10.
J. M. Abadal, J. Gonzalez-Nieto, F. Lopez-Zarraga, M. A. de Gregorio, P. M. Kitrou y S. Mendez, “Future scenarios and opportunities for interventional radiology in the post COVID-19 era”, Diagn Interv Radiol, vol. 27, no. 2, pp. 263-268, mar. 2021, doi: 10.5152/dir.2020.20494.
G. N. Moawad, S. Rahman, M. A. Martino y J. S. Klebanoff, “Robotic surgery during the COVID pandemic: why now and why for the future”, J Robotic Surg, vol. 14, no. 6, pp. 917-920, dic. 2020, doi: 10.1007/s11701-020-01120-4.
I. Tzinis, “Technology Readiness Level”. NASA.gov. http://www.nasa.gov/directorates/heo/scan/engineering/technology/technology_readiness_level (consultado sept. 27, 2021).
“RoboCup”. RoboCup.org. https://www.robocup.org/ (consultado sept. 27, 2021).
“RoboCup@Home. Where the best domestic service robots test themselves”. https://athome.robocup.org/ (consultado sept. 27, 2021).
“Federación Mexicana de Robótica”. https://femexrobotica.org/ (consultado sept. 27, 2021).
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Mauricio Enrique Reyes Castillo, Andrés Joaquín Fonseca Murillo, Carlos Ricardo Cruz Mendoza
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Todos los contenidos de CULCYT se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento-No Comercial 4.0 Internacional” (CC-BY-NC). Puede consultar desde aquí la versión informativa de la licencia.
Los autores/as que soliciten publicar en esta revista, aceptan los términos siguientes: a) los/las autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra; y b) se permite y recomienda a los/las autores/as agregar enlaces de sus artículos en CULCYT en la página web de su institución o en la personal, debido a que ello puede generar intercambios interesantes y aumentar las citas de su obra publicada.