The mathematical disarticulation in Engineering. An alternative for its study and alertness, from Mathematics Education
Main Article Content
Abstract
We present the results and analysis of the documentation of the scenery, a first stage of a research in Mathematics Education that uses the Socio-epistemological Theory and the Ethnographic Method to identify and characterize the uses of the trigonometrical notions that are present in direct-kinematics problems in Robotics from Mechatronics Engineering, in particular in the context of professional engineering training in a Mexican university. We give evidence that even though a curricular articulation is present, it is insufficient to cope with the necessity of a robust articulation of uses of trigonometric notions where the construction of visual references is highlighted as a context that gives meaning to mathematical knowledge, but is absent in Mathematics courses where Trigonometry is taught. We conclude by specifying two non-mathematical social variables that are important for our research and pose a hypothesis for the next stages.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Bruce, Catherine, Brent Davis, Nathalie Sinclair, Lynn McGarvey, David Hallowell, Michelle Drefs, Krista Francis, Zachary Hawes, Joan Moss,
Joanne Mulligan, Yukari Okamoto, Walter Whiteley, Geoff Woolcott. 2017. Understanding gaps in research networks: using “spatial reasoning” as a window into the importance of networked educational research. Educational Studies in Mathematics, 95(2): 143-161. https://doi.org/10.1007/s10649-016-9743-2
Cabañas, Guadalupe. 2011. El papel de la noción de conservación del área en la resignificación de la integral definida. Un estudio socioepistemológico. Tesis de doctorado, México: Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional.
Cantoral, Ricardo. 2013. Teoría Socioepistemológica de la Matemática Educativa. Estudios sobre construcción social del conocimiento. España: Gedisa.
Cantoral, Ricardo. y Rosa Farfán. 2003. Mathematics Education: A vision of its evolution. Educational Studies in Mathematics, 53(3): 255–270. https://doi.org/10.1023/A:1026008829822
Cantoral, Ricardo, Rosa Farfán, Javier Lezama, Gustavo Martínez-Sierra. 2006. Socioepistemología y representación: algunos ejemplos. Revista Latinoamericana de Investigación en Matemática Educativa, número especial: 83-102.
Cantoral, Ricardo, Gisela Montiel y Daniela Reyes-Gasperini. 2015. Análisis del discurso Matemático Escolar en los libros de texto, una mirada desde la Teoría Socioepistemológica. Avances de Investigación en Educación Matemática, 8: 9-28. https://doi.org/10.35763/aiem.v1i8.123
Cantoral, Ricardo, , Daniela Reyes-Gasperini y Gisela Montiel (2014). Socioepistemología, Matemáticas y Realidad. Revista Latinoamericana de Etnomatemática, 7(3): 91-116.
Craig, John. 2006. Robótica. México: Pearson.
Geertz, Clifford. 2006. La interpretación de las culturas. España: Gedisa.
Hammersley, Martyn y Paul Atkinson. 1994. Etnografía. Métodos de Investigación. Barcelona: Paidós.
Herrera, Rodolfo. 1990. Crítica al modelo ortodoxo de la enseñanza de la ingeniería e ideas para su modificación. Tecnología en marcha, 10(1): 3-16.
Hinojos, Jesús y Rosa Farfán. 2017. Acerca de las nociones de estabilidad en electricidad, la relación entre el calor y la electricidad. Revista de História da Educação Matemática, 3(3): 68-100.
Instituto Tecnológico de Sonora. 2014. Programa de curso de Robótica Industrial c/Lab. México: ITSON.
Instituto Tecnológico de Sonora. 2019. Ingeniería Mecatrónica. https://www.itson.mx/oferta/imt/Paginas/imt.aspx (13 de mayo, 2019)
Jácome, Gonzalo. 2011. Estudio socioepistemológico a las relaciones trigonométricas en el triángulo rectángulo. Un acercamiento a los significados construidos por el profesor. Tesis de maestría, México: Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del Instituto Politécnico Nacional.
Langereis, Geert, Jun Hu y Loe Feijs. 2013. How to Introduce Matematical Modelling in Industrial Design Education? En Teaching Matematical Modelling: Connceting to Research and Practice, editado por Gloria Stillman, Gabriele Kaiser, Werner Blum, Jill Brown. Países Bajos: Springer, 551-561.
Mendoza-Higuera, Johanna y Francisco Cordero. 2018. La modelación en las comunidades de conocimiento matemático. El uso de las matemáticas en ingenieros biónicos. El caso de la estabilidad. Revista Latinoamericana de Etnomatemática, 11(1): 36-61.
Mendoza-Higuera, Johanna, Francisco Cordero, Miguel Solís, Karla Gómez. 2018. El Uso del Conocimiento Matemático en las comunidades de Ingenieros. Del Objeto a la Funcionalidad Matemática. Bolema, 32(62): 1219-1243. http://dx.doi.org/10.1590/1980-4415v32n62a23
Montiel, Gisela. 2011. Construcción de conocimiento trigonométrico. Un estudio Socioepistemológico. México: Ediciones Díaz de Santos.
Montiel, Gisela. y Gonzalo Jácome. 2014. Significado trigonométrico en el profesor. Boletim de Educação Matemática, 28(50): 1193-1216. http://dx.doi.org/10.1590/1980-4415v28n50a10
Moore, Kevin. 2014. Quantitative reasoning and the sine function: The case of Zac. Journal for Research in Mathematics Education, 45(1): 102-138.
Morimoto, Teodoro. 2009. Fundamentos de Matemáticas. México: Instituto Tecnológico de Sonora.
Norton, Robert. 2009. Diseño de maquinaria. Síntesis y análisis de máquinas y mecanismos. México: McGraw-Hill.
Reyes-Cortés, Fernando. 2011. Robótica. Control de robots manipuladores. México: Alfaomega.
Rodríguez-Gómez, David y Jordi Valldeoriola. 2012. Metodología de la investigación. España: Universitat Oberta de Cataluña.
Rotaeche, Rosa. 2012. Construcción de conocimiento matemático en escenarios escolares. El caso de la angularidad en el nivel básico. Memoria predoctoral, México: Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del Instituto Politécnico Nacional.
Rotaeche, Rosa. y Gisela Montiel. 2017. Aprendizaje del concepto escolar de ángulo en estudiantes mexicanos de nivel secundaria. Educación Matemática, 29(1): 171-199. DOI: 10.24844/EM2901.07
Saha, Subir. 2010. Introducción a la robótica. México: Mc Graw Hill.
Scholz, Olivia. 2014. Construcción de significados para lo trigonométrico en el contexto geométrico del círculo. Tesis de maestría, México: Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del Instituto Politécnico Nacional. México. doi: 10.13140/RG.2.2.34414.10568
Sierpinska, Anna. 2000. On Some Aspects of Students’ Thinking in Linear Algebra. En On the Teaching of Linear Algebra, editado por Jean-Luc Dorier. Springer: Dordrecht, 209-246.
Soto, Daniela y Ricardo Cantoral (2014). Discurso Matemático Escolar y Exclusión. Una Visión Socioepistemológica. Boletim de Educação Matemática, 28(50): 1525-1544. http://dx.doi.org/10.1590/1980-4415v28n50a25
Spong, Mark, Seth Hutchinson y M Vidyasagar. 2004. Robot dynamics and control. Singapore: John Wiley & Sons.
Torres-Corrales, Diana. 2014. Un entorno geométrico para la resignificación de las razones trigonométricas en estudiantes de Ingeniería. Tesis de maestría, México: Instituto Tecnológico de Sonora. doi: 10.13140/RG.2.1.2993.5603/1
Tuyub, Isabel y Gabriela Buendía. 2017. Gráficas lineales: un proceso de significación a partir de su uso en ingeniería. Revista de Investigación Educativa de la Rediech, 8(15): 11-28.
Vohns, Andreas. 2006. Reconstructing basic ideas in geometry—an empirical approach. ZDM, 38(6): 498-504. https://doi.org/10.1007/BF02652787
Young, Hugh y Roger Freedman. 2009. Física universitaria. México: Pearson Educación.