Reconocimiento de objetos en una plataforma robótica móvil

Lorenzo García Tena, Humberto Sossa, Alejandro Alvarado, Osslan Osiris Vergara, Víctor Manuel Hinostroza Zubía, Francisco Javier Lopez Benavides

Resumen


La implementación de los algoritmos de reconocimiento de patrones SURF y SIFT en plataformas robóticas móviles permite el uso de los mismos en una serie de tareas amplias como lo pueden ser el acomodo de libros en una biblioteca de manera automática o la selección y aislamiento de material peligroso. Este trabajo se realizó utilizando la Interfaz de Programación de Aplicaciones (API) de una plataforma robótica móvil Robotino, las librerías de código libre OpenCV y el sensor de visión propio del robot. Ambos casos presentan ventajas y desventajas definidas ampliamente en la parte de desarrollo, así como los retos aún existentes en la investigación que continua en labor. Se busca ampliar los datos obtenidos implementando dichos algoritmos de manera autónoma en plataformas nuevas adquiridas y calibrando empíricamente cada algoritmo independientemente.

Palabras clave


Puntos característicos; descriptores; clasificación; algoritmo; SIFT; SURF; Robotino

Texto completo:

PDF

Referencias


Chen, C. C., & Hsieh, S. L. (2015). Using binarization and hashing for efficient SIFT matching. Journal of Visual Communication and Image Representation, 30, 86-93.

Du, G., Su, F., & Cai, A. (2009, October). Face recognition using SURF features. In Sixth International Symposium on Multispectral Image Processing and Pattern Recognition (pp. 749628-749628). International Society for Optics and Photonics.

Harada, K., Tsuji, T., Nagata, K., Yamanobe, N., & Onda, H. (2014). Validating an object placement planner for robotic pick-and-place tasks. Robotics and Autonomous Systems, 62(10), 1463-1477.

Huang, L., Chen, C., Shen, H., & He, B. (2015). Adaptive registration algorithm of color images based on SURF. Measurement, 66, 118-124.

Kang, S., & Lee, S. W. (2002). Real-time tracking of multiple objects in space-variant vision based on magnocellular visual pathway. Pattern recognition, 35(10), 2031-2040.

Krapp, H. G. (2007). Polarization vision: how insects find their way by watching the sky. Current biology, 17(14), R557-R560.

Liu, Y., Liu, S., & Wang, Z. (2015). Multi-focus image fusion with dense SIFT. Information Fusion, 23, 139-155.

Miao, Q., Wang, G., Shi, C., Lin, X., & Ruan, Z. (2011). A new framework for on-line object tracking based on SURF. Pattern Recognition Letters, 32(13), 1564-1571.

Sykora, P., Kamencay, P., & Hudec, R. (2014). Comparison of SIFT and SURF Methods for Use on Hand Gesture Recognition based on Depth Map. AASRI Procedia, 9, 19-24.

Tsai, C. Y., & Song, K. T. (2009). Dynamic visual tracking control of a mobile robot with image noise and occlusion robustness. Image and Vision Computing, 27(8), 1007-1022.

Tzafestas, S. G. (2013). Introduction to mobile robot control. Elsevier.

Valgren, C., & Lilienthal, A. J. (2010). SIFT, SURF & seasons: Appearance-based long-term localization in outdoor environments. Robotics and Autonomous Systems, 58(2), 149-156.


Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2017 CULCyT

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.

Responsable de la última actualización de este número: Raúl Alfredo Meza González. Fecha de la última modificación, 15 de enero de 2020.

Las opiniones expresadas por los autores no necesariamente reflejan la postura del editor de la publicación. Los contenidos e imágenes de la publicación estan sujetos a una licencia CC 4.0 internacional BY NC. 

 Licencia de Creative Commons