Perspectiva de la oxidación electroquímica de colorantes sintéticos en aguas residuales artificiales: Rol del material anódico

Autores/as

DOI:

https://doi.org/10.20983/culcyt.2023.3.3.1

Palabras clave:

oxidación directa, oxidación indirecta, electrodo pasivo, electrodo activo, material electródico

Resumen

El intensivo uso de colorantes que realiza la industria textil en la operación de teñido aporta un poco más de la mitad del agua residual coloreada (54 %) al medio ambiente en el mundo. El impacto negativo se produce en cuerpos acuáticos perjudicando la cadena alimenticia, la actividad fotosintética, la cantidad de oxígeno disuelto y otros aspectos. Los seres humanos expuestos también pueden contraer enfermedades desde dermatitis hasta problemas del sistema nervioso central. El tratamiento de aguas residuales coloreadas es entonces un requisito que puede realizarse por las vías física, química o biológica convencionalmente. El método electroquímico alternativo que ha propiciado interés es la oxidación electroquímica inducida con electrolitos añadidos y materiales electródicos diversos. Las publicaciones recientes indican que los electrodos de diamante dopado con boro, platino, grafito, PbO2 dopado, PbO2 sin dopar y dimensionalmente estables, alcanzan remociones de color sobresalientes superiores al 90 % y en algunos casos alrededor de 60 % de materia orgánica, cuantificada como DQO o COT, que se limitó por la presencia de subproductos orgánicos. El aumento del empleo de nanotecnología factible para configurar características electrocatalíticas mejores con base en nanopartículas o nanoestructuras incorporadas al electrodo se vislumbra como posible tendencia futura.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Humberto Rubí Juárez, Universidad Autónoma de Ciudad Juárez

Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez

Linda Estefany Morales Galicia, Universidad Autónoma de Ciudad Juárez

Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez

Marisela Yadira Soto Padilla, Universidad Autónoma de Ciudad Juárez

Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez

Felipe Adrián Vázquez Galvez, Universidad Autónoma de Ciudad Juárez

Profesor-investigador, responsable del Laboratorio de Climatologia y Calidad del Aire,

Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez

 

Citas

G. R. Chatwal, “Introduction to dyes”, en Synthetic Dyes, M. Arora, ed. Himalaya Publishing House Pvt. Ltd, 2016, cap. 1, pp. 1-9.

M. Iqbal, “Dyes & colour”, en Textile Dyes, M. Iqbal ed. Karachi: Rehbar Publishers, abr. 2008, cap. 1, pp. 1-6.

V. Katheresan, J. Kansedo y S. Y. Lau, “Efficiency of various recent wastewater dye removal methods: A review”, J. Environ. Chem. Eng., vol. 6, n.º 4, pp. 4676-4697, ag. 2018, doi: 10.1016/j.jece.2018.06.060.

B. M. Adesanmi, Y-T. Hung, H. H. Paul. y C. R. Huhnke, “Comparison of dye wastewater treatment methods: A review”, GSC Adv. Res. Rev., vol. 10, n.º 2, pp. 126-137, feb. 2022, doi: 10.30574/gscarr.2022.10.2.0054.

S. Benkhaya, S. M’rabet, H. Lgaz, A. E. Bachiri y A. E. Harfi, “Dyes: Classification, Pollution, and Environmental Effects” en Dye Biodegradation, Mechanisms and Techniques. Recent Advances, S. S. Muthu y A. Khadir, eds. Springer Nature Singapore Pte Ltd, 2022, pp. 1-50, doi: 10.1007/978-981-16-5932-4_1.

S. Gita, A. Hussan y T. G. Choudhury, “Impact of textile dyes waste on aquatic environments and its treatment”, Environment & Ecology, vol. 35, n.º 3C, pp. 2349-2353, 2017.

R. Al-Tohamy et al., “A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety”, Ecotoxicol. Environ. Saf., vol. 231, p. 113160, feb. 2022, doi: 10.1016/j.ecoenv.2021.113160.

S. Khan y A. Malik, “Environmental and Health Effects of Textile Industry Wastewater” en Environmental Deterioration and Human Health, A. Malik, E. Grohmann, R. Akhtar, eds. Dordrecht: Springer, dic. 2013, pp. 55-72, doi: 10.1007/978-94-007-7890-0_4.

B. Lellis, C. Z. Fávaro-Polonio, J. A. Pamphile y J. C. Polonio, “Effects of textile dyes on health and the environment and bioremediation potential of living organisms”, Biotechnol. Res. Innov., vol. 3, n.º 2, pp. 275-290, jul.-dic. 2019, doi: 10.1016/j.biori.2019.09.001.

R. Kant, “Textile dyeing industry an environmental hazard”, Natural Science, vol. 4, n.º 1, pp. 22-26, en. 2012, doi: 10.4236/ns.2012.41004.

S. Khan y A. Malik, “Toxicity evaluation of textile effluents and role of native soil bacterium in biodegradation of a textile dye”, Environ Sci Pollut Res, vol. 25, n.º 5, pp. 4446-4458, nov. 2017, doi: 10.1007/s11356-017-0783-7.

K. Hunger y Sewekow, “Health and Safety Aspects” en Industrial dyes: Chemistry, properties and applications, K. Hunger, ed. Weinheim: Willey-VCH, dic. 2002, cap. 8, pp. 625-641, doi: 10.1002/3527602011.ch8.

D. M. Leme, F. L. Primo, G. G. Gobo, C. R. Vieira da Costa, A. C. Tedesco y D. Palma de Oliveira, “Genotoxicity assessment of reactive and disperse textile dyes using human dermal equivalent (3D cell culture system)”, J Toxicol Environ Health, vol. 78, n.º 7, pp. 466-480, mar. 2015, doi: 10.1080/15287394.2014.999296.

P. Gregory, “Toxicology of textile dyes” en Environmental aspects of textile dyeing (Serie Textiles), R. M. Christie, ed. CRC press, 2007, cap. 3, pp. 44-73, doi: 10.1533/9781845693091.44.

F. M. D. Chequer et al., “The azo dyes Disperse Red 1 and Disperse Orange 1 increase the micronuclei frequencies in human lymphocytes and in HepG2 cells”, Mutat Res, vol. 676, n.º 1-2, pp. 83-86, may. 2009, doi: 10.1016/j.mrgentox.2009.04.004.

J. Feng, C. E. Cerniglia y H. Chen, “Toxicological significance of azo dye metabolism by human intestinal microbiota”, Front. Biosci. (Elite Ed), vol. 4, n.º 2, pp. 568-586, en. 2012, doi: 10.2741/e400.

S. Mondal, M. K. Purkait y S. De, “Introduction”, en Advances in Dye Removal Technologies (Serie Green Chemistry and Sustainable Technology). Springer Nature Singapore Pte Ltd, oct. 2017, cap. 1, pp. 1-48, doi: 10.1007/978-981-10-6293-3_1.

C. V. Nachiyar, A.D. Rakshi, S. Sandhya, N. B. D. Jebasta y J. Nellore, “Developments in treatment technologies of dye-containing effluent: A review”, Case Stud. Chem. Environ. Eng., vol. 7, pp. 100339, en. 2023, doi: 10.1016/j.cscee.2023.100339.

V. Khandegar y A. K. Saroha, “Electrocoagulation for the treatment of textile industry effluent A review”, J Environ Manage, vol. 128, pp. 949-963, oct. 2013, doi: 10.1016/j.jenvman.2013.06.043.

J. Fadzli, K. H. K. Hamid, N. R. N. Him y S. W. Puasa, “A critical review on the treatment of reactive dye wastewater”, Desalin. Water Treat., vol. 257, pp. 185-203, may. 2022, doi: 10.5004/dwt.2022.28028.

S. Samsami, M. Mohamadi, M.-H. Sarrafzadeh, E. R. Rene y M. Firoozbahr, “Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives”, Process Saf. Environ. Prot., vol. 143, pp. 138-163, nov. 2020, doi: 10.1016/j.psep.2020.05.034.

P. K. Singh y R. L. Singh, “Bio-removal of Azo Dyes: A Review”, Int. j. appl. sci. biotechnol., vol. 5, n.º 2, pp. 108-126, 2017, doi: 10.3126/ijasbt.v5i2.16881.

S. Pulkka, M. Martikainen, A. Bhatnagar y M. Sillanpää, “Electrochemical methods for the removal of anionic contaminants from water – A review”, Sep. Purif. Technol., vol. 132, pp. 252-271, ag. 2014, doi: 10.1016/j.seppur.2014.05.021.

M. Panizza, “Importance of electrode material in the electrochemical treatment of wastewater containing organic pollutants”, en Electrochemistry for the Environment, C. Comninellis y G. Chen, eds. Nueva York: Springer New York, 2010, cap. 2, pp. 25-54, doi: 10.1007/978-0-387-68318-8_2.

H. Hamad, D. Bassyouni, El.-S. El-Ashtoukhy, N. Amin y M. A. El-Latif, “Electrocatalytic degradation and minimization of specific energy consumption of synthetic azo dye from wastewater by anodic oxidation process with an emphasis on enhancing economic efficiency and reaction mechanism”, Ecotoxicol Environ Saf, vol. 148, pp. 501-512, feb. 2018, doi: 10.1016/j.ecoenv.2017.10.061.

Ö. Kahraman y I. Şimşek, “Color removal from denim production facility wastewater by electrochemical treatment process and optimization with regression method”, J. Clean. Prod., vol. 267, pp. 122168, sept. 2020, doi: 10.1016/j.jclepro.2020.122168.

A. N. S. Rao y V. T. Venkatarangaiah, “Metal oxide-coated anodes in wastewater treatment”, Environ Sci Pollut Res Int, vol. 21, n.º 5, pp. 3197-3217, nov. 2013, doi: 10.1007/s11356-013-2313-6.

C. Comninellis y G. P. Vercesi, “Characterization of DSA®-type oxygen evolving electrodes: Choice of a coating”, J Appl Electrochem, vol. 21, pp. 335-345, abr. 1991, doi: 10.1007/BF01020219.

S. Trasatti, “Electrocatalysis by oxides – Attempt at a unifying approach”, J. Electroanal. Chem., vol. 111, n.º 1, pp. 125-131, jul. 1980, doi: 10.1016/S0022-0728(80)80084-2.

M. Pacheco-Alvarez, R. Fuentes-Ramírez, E. Brillas y J. M. Peralta-Hernández, “Assessing the electrochemical degradation of reactive orange 84 with Ti/IrO₂–SnO₂–Sb₂O₅ anode using electrochemical oxidation, electro-Fenton, and photoelectro-Fenton under UVA irradiation”, Chemosphere, vol. 339, pp. 139666, oct. 2023, doi: 10.1016/j.chemosphere.2023.139666.

X. Yu, M. Zhou, Y. Hu, K. G. Serrano y F. Yu, “Recent updates on electrochemical degradation of bio-refractory organic pollutants using DDB anode: a mini review”, Environ Sci Pollut Res, vol. 21, n.º 14, pp. 8417-8431, abr. 2014, doi: 10.1007/s11356-014-2820-0.

P. V. Nidheesh, G. Divyapriya, N. Oturan, C. Trellu y M. A. Oturan, “Environmental applications of boron-doped diamond electrodes: 1. Applications in water and wastewater treatment”, Chem Electro Chem, vol. 6, n.º 8, pp. 2124-2142, abr. 2019, doi: 10.1002/celc.201801876.

W. Sun, D. Liu y M. Zhang, “Application of electrode materials and catalysts in electrocatalytic treatment of dye wastewater”, Front. Chem. Sci. Eng., vol. 15, n.º 6, pp. 1427-1443, oct. 2021, doi: 10.1007/s11705-021-2108-0.

Q. Zhou, X. Zhou, R. Zheng, Z. Liu y J. Wang, “Application of lead oxide electrodes in wastewater treatment: a review”, Sci Total Environ, vol. 806, parte 1, pp. 150088, feb. 2022, doi: 10.1016/j.scitotenv.2021.150088.

E. Brillas y C. A. Martínez-Huitle, “Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review”, Appl. Catal. B: Environ., vol. 166-167, pp. 603-643, may. 2015, doi: 10.1016/j.apcatb.2014.11.016.

E. N. Abrahart, “Dyestuffs” en The Chemical Industry, C. A. Heaton, ed. Blackie & Son Limited, 1986, cap. 2, pp. 64-125, doi: 10.1007/978-1-4615-8541-1_3.

J. A. Kiernan, “Classification and naming of dyes, stains and fluorochromes”, Biotech Histochem, vol. 76, n.º 5-6, pp. 261-278, sept.-nov. 2001, doi: 10.1080/bih.76.5-6.261.278.

K. Hunger, “Dyes, General Survey” en Industrial Dyes Chemistry: Properties, Applications, K. Hunger, ed. Wiley‐VCH Verlag GmbH & Co, dic. 2002, cap. 1, pp. 1-12, doi: 10.1002/3527602011.ch1.

S. Dutta, B. Gupta, S. K. Srivastava y A. K. Gupta, “Recent advances on the removal of dyes from wastewater using various adsorbents: a critical review”, Mater. Adv., vol. 2, n.º 14, pp. 4497-4531, jun. 2021, doi: 10.1039/D1MA00354B.

A. E. Ghaly, R. Ananthashankar, M. Alhattab y V. V. Ramakrishnan, “Production, characterization and treatment of textile effluents: a critical review”, J Chem Eng Process Technol, vol. 5, n.º 1, pp. 1000182, en. 2014, doi: 10.4172/2157-7048.1000182.

G. R. Chatwal, “Chemical Classification of Dyes”, en Synthetic Dyes. M. Arora, ed. Himalaya Publishing House Pvt. Ltd, 2016, cap. 4, pp. 1-10.

K. Hunger, P. Gregory, P. Miederer, H. Berneth, C. Heid y W. Mennicke, “Important chemical chromophores of dye classes” en Industrial Dyes Chemistry: Properties, Applications, K. Hunger, ed. Wiley‐VCH Verlag GmbH & Co, dic. 2002, cap. 2, pp. 13-112, doi: 10.1002/3527602011.ch2.

S. M. Burkinshaw, “Application of dyes” en The chemistry and application of dyes, D. R. Waring y G. Hallas, eds. Nueva York: Plenum Press, 1990, cap. 7, pp. 237-379, doi: 10.1007/978-1-4684-7715-3_7.

G. R. Chatwal, “Sulphur Dyes”, en Synthetic Dyes, M. Arora, ed. Himalaya Publishing House Pvt. Ltd, 2016, cap. 19, pp. 1-2.

S. M. Shang, “Process control in dyeing of textiles” en Process control in textile manufacturing (Serie Textiles), A. Majumdar, A. Das, R. Alagirusamy, V. Kothari, eds. CRC press, 2013, cap. 13, pp. 300-338, doi: 10.1533/9781845693091.44.

J. N. Chakraborty, “Dyeing with reactive dye” en Fundamentals and practices in colouration of textiles. WPI Publishing New York, 2014, cap. 6, pp. 61-76.

V. Moody y H. L. Needles, “Color, Dyes, Dyeing, and Printing” en Tufted carpet textile fibers, dyes, finishes, and processes. Norwich: William Andrew, 2004, cap. 15, pp. 155-175, doi: 10.1016/B978-188420799-0.50016-6.

J. N. Chakraborty, “Dyeing of silk” en Fundamentals and practices in colouration of textiles. WPI Publishing New York, 2014, cap. 21, pp. 262-270.

H. Zollinger, “Nitro and nitroso dyes” en Color chemistry: syntheses, properties, and applications of organic dyes and pigments, 3.ª ed. Wiley‐VCH Verlag GmbH & Co, 2003, pp. 637.

J. Koh, “Dyeing with disperse dyes” en Textile dyeing, P. Hauser ed. IntechOpen, dic. 2011, cap. 10, pp. 195-220, doi: 10.5772/800.

I. Holme, “Coloration of technical textiles” en Handbook of technical textiles, vol. 1: Technical Textile Processes, 2.ª ed., A. R. Horrocks y S. C. Anand, eds. Woodhead Publishing Series in Textiles, 2016, cap. 9, pp. 231-284, doi: 10.1016/B978-1-78242-458-1.00009-1.

D. P. Chattopadhyay, “Chemistry of dyeing” en Handbook of textile and industrial dyeing. Principles, processes and types of dyes, M. Clark, ed. Woodhead Publishing Series in Textiles, 2011, cap. 4, pp. 150-183, doi: 10.1533/9780857093974.1.150.

P. V. Nidheesh, R. Gandhimathi y S. T. Ramesh, “Degradation of dyes from aqueous solution by Fenton processes: a review”, Environ Sci Pollut Res, vol 20, n.º 4, pp. 2099-2132, en. 2013, doi: 10.1007/s11356-012-1385-z.

A. Gürses, M. Açıkyıldız, K. Güneş y M. S. Gürses, “Classification of dye and pigments” en Dyes and pigments (Serie SpringerBriefs in Molecular Science), may. 2016, cap. 3, pp. 31-46, doi: 10.1007/978-3-319-33892-7_3.

N. N. Mahapatra, “Acid dyes” en Textile dyes. Woodhead publishing India Pvt Ltd, abr. 2016, cap. 8, pp. 97-112.

A. Kumar, U. Dixit, K. Singh, S. P. Gupta y M. S. J. Beg, “Structure and properties of dyes and pigments” en Dyes and pigments novel applications and waste treatment, R. Papadakis, ed. IntechOpen, jun. 2021, cap. 8, pp. 1-19, doi: 10.5772/intechopen.97104.

G. R. Chatwal, “Classification of dyes on the basis of mode of application”, en Synthetic Dyes, M. Arora, ed. Himalaya Publishing House Pvt. Ltd, 2016, cap. 3, pp. 1-6.

C. A. Martínez-Huitle y S. Ferro, “Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes”, Chem Soc Rev, vol. 35, n.º 12, pp. 1324-1340, jul. 2006, doi: 10.1039/B517632H.

Á. Anglada, A. Urtiaga e I. Ortiz, “Contributions of electrochemical oxidation to waste-water treatment: fundamentals and review of applications”, J. Chem. Technol. Biotechnol., vol. 84, n.º 12, pp. 1747-1755, may. 2009, doi: 10.1002/jctb.2214.

M. J. Martín de Vidales Calvo, “Eliminación de contaminantes orgánicos persistentes de aguas residuales mediante oxidación electroquímica con ánodo de diamante dopado con boro”, tesis de doctorado, Depto. de Ing. Química, Universidad de Castilla-La Mancha, España, 2015.

K. Juttner, U. Galla y H. Schmieder, “Electrochemical approaches to environmental problems in the process industry”, Electrochim. Acta, vol. 45, n.º 15-16, pp. 2575-2594, may. 2000, doi: 10.1016/S0013-4686(00)00339-X.

B. Marselli, J. Garcia-Gomez, P.-A. Michaud, M. A. Rodrigo y C. Comninellis, “Electrogeneration of hydroxyl radicals on boron doped diamond electrodes”, J. Electrochem. Soc., vol. 150, n.º 3, pp. D79-D83, feb. 2003, doi: 10.1149/1.1553790.

S. K. Ghosh y H. Rahaman, “Noble metal manganese oxide hybrid nanocatalysts” en Noble metal-metal oxide hybrid nanoparticles. Fundamentals and applications a volume. Micro and nano technologies, S. Mohapatra, T. A. Nguyen y P. Nguyen-Tri, eds. Woodhead Publishing an imprint of Elsevier, 2019, cap. 16, pp. 313-340, doi: 10.1016/B978-0-12-814134-2.00009-7.

A. N. S. Rao y V. T. Venkatarangaiah, “Metal oxide-coated anodes in wastewater treatment”, Environ. Sci. Pollut. Res., vol. 21, n.º 5, pp. 3197-3217, nov. 2013, doi: 10.1007/s11356-013-2313-6.

T. Zhang, Z. Xue, Y. Xie, G. Huang y G. Peng, “Fabrication of a boron-doped nanocrystalline diamond grown on an WC–Co electrode for degradation of phenol”, RSC advances, vol. 12, n.º 41, pp. 26580-26587, sept. 2022, doi: 10.1039/D2RA04449H.

J. M. Aquino, M. A. Rodrigo, R. C. Rocha-Filho, C. Sáez y P. Cañizares, “Influence of the supporting electrolyte on the electrolyses of dyes with conductive-diamond anodes”, Chem. Eng. J., vol. 184, pp. 221-227, mar. 2012, doi: 10.1016/j.cej.2012.01.044.

C. Ramírez et al., “Electrochemical oxidation of methyl orange azo dye at pilot flow plant using DDB technology”, J. Ind. Eng. Chem., vol. 19, n.º 2, pp. 571-579, mar. 2013, doi: 10.1016/j.jiec.2012.09.010.

R. Bogdanowicz et al., “Influence of the boron doping level on the electrochemical oxidation of the azo dyes at Si/DDB thin film electrodes”, Diam. Relat. Mater., vol. 39, pp. 82-88, ag. 2013, doi: 10.1016/j.diamond.2013.08.004.

C. N. Brito et al., “Electrochemical Oxidation of Acid Violet 7 Dye by Using Si/DDB and Nb/DDB Electrodes”, J. Electrochem. Soc., vol. 165, n.º 5, pp. E250-E255, abr. 2018, doi: 10.1149/2.1111805jes.

F. L. Migliorini, A. B. Couto, S. A. Alves, M. R. de V. Lanza y N. G. Ferreira, “Influence of supporting electrolytes on RO 16 dye electrochemical oxidation using boron doped diamond electrodes”, Mater. Res., vol. 20, n.º 3, pp. 584-591, feb. 2017, doi: 10.1590/1980-5373-MR-2016-0153.

Y. Tang et al., “Electrochemical oxidative degradation of X-6G dye by boron-doped diamond anodes: Effect of operating parameters”, Chemosphere, vol. 258, pp. 127368, nov. 2020, doi: 10.1016/j.chemosphere.2020.127368.

M. Panizza y G. Cerisola, “Electrocatalytic materials for the electrochemical oxidation of synthetic dyes”, Appl. Catal. B: Environ., vol. 75, n.º 1-2, pp. 95-101, ag. 2007, doi: 10.1016/j.apcatb.2007.04.001.

S. Salvestrini, A. Fenti, S. Chianese, P. Iovino y D. Musmarra, “Electro-oxidation of humic acids using platinum electrodes: an experimental approach and kinetic modelling”, Water, vol. 12, n.º 8, pp. 2250, ag. 2020, doi: 10.3390/w12082250.

S. Khezrianjoo y H. D. Revanasiddappa, “Evaluation of kinetics and energy consumption of the electrochemical oxidation of Acid Red 73 in aqueous media”, Toxicol Environ Chem, vol. 98, n.º 7, pp. 759-767, feb. 2016, doi: 10.1080/02772248.2016.1139118.

N. Khalfaoui, H. Boutoumi, H. Khalaf, N. Oturan y M. A. Oturan, “Electrochemical Oxidation of the Xanthene Dye Rhodamine 6G by Electrochemical Advanced Oxidation Using Pt and DDB Anodes”, Curr. Org. Chem., vol. 16, n.º 18, pp. 2083-2090, 2012, doi: 10.2174/138527212803532459.

N. Nordin, S. F. M. Amir, Riyanto y M. R. Othman, “Textile industries wastewater treatment by electrochemical oxidation technique using metal plate”, Int. J. Electrochem. Sci., vol. 8, n.º 9, pp. 11403-11415, sep. 2013, doi: 10.1016/S1452-3981(23)13193-2.

M. Jović et al., “Study of the electrochemical oxidation of reactive textile dyes using platinum electrode”, Int. J. Electrochem. Sci., vol. 8, n.º 1, pp. 168-183, en. 2013, doi: 10.1016/S1452-3981(23)14011-9.

S. E. Aggadi, Z. E. Abbassi y A. E. Hourch, “Color removal from dye-containing aqueous solutions by electrooxidation”, Desalin. Water Treat., vol. 215, pp. 232-236, mar. 2021, doi: 10.5004/dwt.2021.26766.

M.-X. Qiao, Y. Zhang, L.-F. Zhai y M. Sun. “Corrosion of graphite electrode in electrochemical advanced oxidation processes: degradation protocol and environmental implication”, Chem. Eng. J., vol. 344, pp. 410-418, jul. 2018, doi: 10.1016/j.cej.2018.03.105.

P. Kariyajjanavar, J. Narayana y Y. A. Nayaka, “Electrochemical degradation of C.I. Vat Brown 1 dye on carbon electrode”, Adv. Chem. Lett., vol. 1, n.º 1, pp. 32-39, mar. 2013, doi: 10.1166/acl.2013.1002.

P. Kariyajjanavar, J. Narayana y Y. A. Nayaka, “Degradation of textile dye C.I. Vat Black 27 by electrochemical method by using carbon electrodes”, J. Environ. Chem. Eng., vol. 1, n.º 4, pp. 975-980, dic. 2013, doi: 10.1016/j.jece.2013.08.002.

M. H. Abdel-Aziz, M. Bassyouni, M. S. Zoromba y A. A. Alshehri, “Removal of dyes from waste solutions by anodic oxidation on an array of horizontal graphite rods anodes”, Ind. Eng. Chem. Res., vol. 58, n.º 2, pp. 1004-1018, en. 2019, doi: 10.1021/acs.iecr.8b05291.

P. Kariyajjanavar, J. Narayana y Y. A. Nayaka, “Electrochemical degradation of C.I. Vat Orange 2 dye on carbon electrode”, Inventi Impact: Water Environ, vol. 2013, n.º 3, pp. 106-112, jul. 2013.

Y. Sürme y O. B. Demirci, “Determination of direct violet 51 dye in water based on its decolorisation by electrochemical treatment”, Chem. Zvesti,, vol. 68, pp. 1491-1497, oct. 2014, doi: 10.2478/s11696-014-0616-9.

X. Hao, G. Wuqi, W. Jia, F. Jiangtao, Y. Honghui y Y. Wei, “Preparation and characterization of titanium-based PbO₂ electrodes modified by ethylene glycol”, RSC Advances, vol. 6, n.º 9, pp. 7610-7617, en. 2016, doi: 10.1039/C5RA21195F.

X. Li, D. Pletcher y F. C. Walsh, “Electrodeposited lead dioxide coatings”, Chem. Soc. Rev., vol. 40, n.º 7, pp. 3879-3894, mar. 2011, doi: 10.1039/C0CS00213E.

J. Lyu et al., “Enhancement of the electrocatalytic oxidation of dyeing wastewater (reactive brilliant blue KN-R) over the Ce-modified Ti-PbO₂ electrode with surface hydrophobicity”, J. Solid State Electrochem., vol. 23, pp. 847-859, en. 2019, doi: 10.1007/s10008-018-04170-9.

Q. Qiao, S. Singh, S.-L. Lo, Y. Li, J. Jin y L. Wang, “Electrochemical oxidation of acid orange 7 dye with Ce, Nd, and Co-modified PbO₂ electrodes: Preparation, characterization, optimization, and mineralization”, J Taiwan Inst Chem Eng, vol. 84, pp. 110-122, mar. 2018, doi: 10.1016/j.jtice.2018.01.008.

H. Han, J. Lyu, L. Zhu, G. Wang, C. Ma y H. Ma, “Fabrication of BN modified Ti/PbO₂ electrodes with tunable hydrophobic characteristics and their electrocatalytic performance”, J. Alloys Compd., vol. 828, pp. 154049, jul. 2020, doi: 10.1016/j.jallcom.2020.154049.

M. Weng, Z. Zhou y Q. Zhang, “Electrochemical degradation of typical dyeing wastewater in aqueous solution: Performance and mechanism”, Int. J. Electrochem. Sci., vol. 8, n.º 1, pp. 290-296, en. 2013, doi: 10.1016/S1452-3981(23)14020-X.

H. Xu, Q. Zhang, W. Yan, W. Chu y L. Zhang, “Preparation and characterization of PbO₂ electrodes doped with TiO2 and its degradation effect on azo dye wastewater”, Int. J. Electrochem. Sci., vol. 8, n.º 4, pp. 5382-5395, abr. 2013, doi: 10.1016/S1452-3981(23)14689-X.

Y. Jiang et al., “Anodic oxidation for the degradation of organic pollutants: Anode materials, operating conditions and mechanisms. A mini review”, Electrochem. commun., vol. 123, pp. 106912, feb. 2021, doi: 10.1016/j.elecom.2020.106912.

S. Ammar, M. Asma, N. Oturan, R. Abdelhedi y M. A. Oturan, “Electrochemical degradation of anthraquinone dye Alizarin Red: Role of the electrode material”, Curr. Org. Chem., vol. 16, n.º 17, pp. 1978-1985, 2012, doi: 10.2174/138527212803251613.

Z. Chen et al., “A novel Pb/PbO2 electrodes prepared by the method of thermal oxidation-electrochemical oxidation: Characteristic and electrocatalytic oxidation performance”, J. Alloys Compd., vol. 851, pp. 156834, en. 2021, doi: 10.1016/j.jallcom.2020.156834.

I. Elaissaoui, H. Akrout y L. Bousselmi, “Interface behavior of PbO₂ on pure lead and stainless steel as anode for dye degradation”, Desalin. Water Treat., vol. 57, n.º 34, pp. 16161-16176, ag. 2015, doi: 10.1080/19443994.2015.1079250.

I. Elaissaoui, H. Akrout, S. Grassini, D. Fulginiti y L. Bousselmi, “Role of SiOx interlayer in the electrochemical degradation of Amaranth dye using SS/PbO₂ anodes”, Mater. Des., vol. 110, pp. 633-643, nov. 2016, doi: 10.1016/j.matdes.2016.08.044.

T. Duan, Y. Chen, Q. Wen, Y. Cong, Y. Duana y Y. Wang, “Novel three-dimensional macroporous PbO₂ foam electrode for efficient electrocatalytic decolorization of dyes”, RSC Advances, vol. 5, n.º 109, pp. 89363-89367, oct. 2015, doi: 10.1039/C5RA17159H.

X. Xie et al., “Carbon nanotube-coated macroporous sponge for microbial fuel cell electrodes”, Energy Environ. Sci., vol. 5, n.º 1, sept. 2011, doi: 10.1039/C1EE02122B.

O. M. Rodríguez-Narváez, A. R. Picos, N. Bravo-Yumi, M. Pacheco-Alvarez, C. A. Martínez-Huitle y J. M. Peralta-Hernández, “Electrochemical oxidation technology to treat textile wastewaters”, Curr. Opin. Electrochem., vol. 29, pp. 100806, oct. 2021, doi: 10.1016/j.coelec.2021.100806.

J. L. S. Duarte et al., “Electrochemical degradation of 17-α-Methyltestosterone over DSA® electrodes”, Chem. Eng. Process.: Process Intensif., vol. 142, pp. 107548, ag. 2019, doi: 10.1016/j.cep.2019.107548.

K. C. Nakamura et al., “Electrochemically-driven mineralization of Reactive Blue 4 cotton dye: On the role of in situ generated oxidants”, J. Electroanal. Chem., vol. 840, pp. 415-422, may. 2019, doi: 10.1016/j.jelechem.2019.04.016.

T. É. S. Santos, R. S. Silva, C. C. Jara, K. I. B. Eguiluz y G. R. Salazar-Banda, “The influence of the synthesis method of Ti/RuO₂ electrodes on their stability and catalytic activity for electrochemical oxidation of the pesticide carbaryl”, Mater. Chem. Phys., vol. 148, n.º 1-2, pp. 39-47, nov. 2014, doi: 10.1016/j.matchemphys.2014.07.007.

A. Baddouh et al., “Electrochemical decolorization of Rhodamine B dye: Influence of anode material, chloride concentration and current density”, J. Environ. Chem. Eng., vol. 6, n.º 2, pp. 2041-2047, abr. 2018, doi: 10.1016/j.jece.2018.03.007.

A. Baddouh, B. E. Ibrahimi, M. M. Rguitti, E. Mohamed, S. Hussain y L. Bazzi, “Electrochemical removal of methylene bleu dye in aqueous solution using Ti/RuO₂–IrO₂ and SnO₂ electrodes”, Sep. Sci. Technol., vol. 55, n.º 10, pp. 1852-1861, abr. 2019, doi: 10.1080/01496395.2019.1608244.

S. Zeb, S. Hussain, H. A. Khan, Z. Ali, N. Khan, K. I. Khan, F. Ali, S. Khan, M. del P. T. Sotomayor y S. Gul, “Electrochemical oxidation of Acid Brown 98 using Ti/Ru₀.₃Ti₀.₇O₂ composite anode”, Int. J. Electrochem. Sci., vol. 13, n.º 10, pp. 9428-9440, oct. 2018, doi: 10.20964/2018.10.06.

S. Cotillas, J. Llanos, P. Cañizares, D. Clematis, G. Cerisola, M. A. Rodrigo y M. Panizza, “Removal of Procion Red MX-5B dye from wastewater by conductive-diamond electrochemical oxidation”, Electrochim. Acta, vol. 263, pp. 1-7, feb. 2018, doi: 10.1016/j.electacta.2018.01.052.

Descargas

Publicado

2023-12-27

Cómo citar

Rubí Juárez, H., Morales Galicia, L. E., Soto Padilla, M. Y., & Vázquez Galvez, F. A. (2023). Perspectiva de la oxidación electroquímica de colorantes sintéticos en aguas residuales artificiales: Rol del material anódico. Cultura Científica Y Tecnológica, 20(3), 25–45. https://doi.org/10.20983/culcyt.2023.3.3.1

Número

Sección

Artículos de revisión