Modelo Multicriterio para la Justificación de Inversiones en Robots

Jorge Luis García Alcaraz, Salvador Noriega Morales, Juan José Díaz Núñez, Manuel A. Rodríguez Medina, Manuel Román Piña Monarrez

Resumen


Resumen

En este artículo se analiza la problemática de las inversiones en Tecnologías para la Manufactura Avanzada y se presenta un modelo para la evaluación y justificación de un robot con tres variables cuantitativas y tres variables cualitativas (atributos); el conjunto de alternativas consta de 6 robots con características diferentes. Para la evaluación se emplea un modelo que se basó en la metodología denominada TOPSIS (del ingles, Technique for Order Preference by Similarity to Ideal Solution), la cual es una metodología multicriterio para evaluación de alternativas.
Para la evaluación de las variables cualitativas se recurre a la opinión de cinco expertos en robótica, los cuales emiten sus juicios sobre las características de los robots y las necesidades que la empresa tiene de éstas. Después de un proceso de evaluación, se obtiene una solución propuesta; la cual está basada en las distancias que tiene el vector que representa a cada alternativa, a un vector ideal y a un vector anti-ideal.

Abstract

We analyzed in this article the Advanced Manufacturing technology investment problem and we proposed a model for the justification of a robot with three quantitative variables and three qualitative variables (attributes). We need  to choice a robot from a set of 6 alternatives (robots) with different characteristics. The evaluation model is based on TOPSIS (Technique for Order - Preference by Similarity to Ideal Solution), this is a multi-criterion methodology for alternatives evaluation. For the evaluation of the qualitative variables we ask the opinion to five experts in robotics, who emit their judgments on the characteristics of robots and the necessities that the company has of these. After an evaluation process, a propose solution is obtained; which is based on the distances that the vector representing each alternative has to an ideal vector and to an anti-ideal vector.


Texto completo:

PDF

Referencias


Al Khalil, M. 2002. Selecting the appropriate project delivery method using AHP. International Journal of Project Management. Vol. 20, Issue 6, pp 469-474.

Al-Harbi, K. 2001. Application of the AHP in project management. International. Journal of Project Management. Vol. 19, Issue 1, pp 19-27.

Canada, J. and Sullivan, W. 1990. Persistent pitfalls and applicable approaches for justification of advanced manufacturing systems. Engineering Costs and Production Economics. Vol. 18, Issue 3, pp 247-253.

Chen, S. and Hwang, C. Fuzz y Multiple Attribute Decision Making: Methods and Applications. Springer-Verlag, Berlin.

Churchill G. and Surprenant, C. 1982. An investigation into the determinants of customer satisfaction. Journal of Marketing Research, No. 19, pp 491-504.

Goh, C. et al 1996. A revised weighted sum decision model for robot selection. Computers & Industrial Engineering. Vol. 30, Issue 2, pp 193-199.

Hwang, C. and Yoon, K. 1981. Multiple Attribute Decision. Making: Methods and Applications, A State- of - the - Art Survey. Springer-Verlag, Berlin.

Khouja, M. 1995. The use of data envelopment analysis for technology selection. Computers and Industrial Engineering, Vol. 28, pp 123-132.

Parkan, C. and Wu, L. 1999. Decision-making and performance measurement models with applications to robot selection. Computers & Industrial Engineering. Vol. 36, Issue 3, pp 503-523.

Sacristán, M. et al. 2003. View of developing patterns of investment in AMT through empirical taxonomies: new evidence. Journal of Operations Management. Vol. 21, Issue 5, pp 577-606.

Segelod, E. 2000. A comparison of managers’ perceptions of short-termism in Sweden and the U.S. International Journal of Production Economics. Vol. 63, Issue 3, pp 243-254.

Small, M. and Chen, I. 1997. Economic and strategic justification of AMT inferences from industrial practices. International Journal of Production Economics. Vol. 49, Issue 1, pp 65-75.

Sohal, A. and Millen, A. 1998. Planning processes for advanced manufacturing technology by large American manufacturers. Technovation. Vol. 18, Issue 12, pp 741-750.

Srinivasan, V. and Shocker, A. 1973. Estimating the weights for multiple attributes in a composite criterion using pairwise judgments. Psychometrika, Vol. 38, pp 473-493.

Suresh, N. and Meredith, J. 1985. Achieving factory automation through Group Technology principles. Journal of Operations Management. Vol. 5, Issue 2, pp 151-167.

Wilkes, F. and Samuels, J. 1991. Financial appraisal to support technological investment. Long Range Planning. Vol. 24, Issue 6, pp 60-66.

Yoon, K. 1980. Systems Selection by Multiple Attribute Decision Making. PhD dissertation, Kansas State University, Manhattan.

Yoon, K. and Hwang, C. 1995. Multiple Attribute Decision Making: An

Introduction. Sage, California.

Yusuff, R. and Hashmib, M. 2001. A preliminary study on the potential use of the analytical hierarchical process (AHP) to predict advanced manufacturing technology (AMT) implementation. Robotics and Computer-Integrated Manufacturing. Vol. 17, Issue 5, pp 421-427.

Zeleny, M. 1974. Linear Multiobjective Programming. Springer- Verlag, New York.


Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2017 CULCyT

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.

Las opiniones expresadas por los autores no necesariamente reflejan la postura del editor de la publicación. Los contenidos e imágenes de la publicación estan sujetos a una licencia CC 4.0 internacional BY NC. 

 Licencia de Creative Commons