Posibilidades de nanocompuestos madera-plástico en el diseño de productos

Autores/as

DOI:

https://doi.org/10.20983/culcyt.2021.3.3.1

Palabras clave:

nanocompuestos, compuestos madera-plástico, diseño de producto

Resumen

Los compuestos de madera-plástico han sido objeto de interés por parte de investigadores por sus propiedades mejoradas, en comparación con los productos basados únicamente en plástico o madera. Sin embargo, durante algunos años se han estudiado los efectos de algunos nanorrellenos sobre estos compuestos. La presente investigación tiene como objetivo la revisión de las investigaciones más relevantes en trabajos publicados en revistas científicas sobre los efectos de los nanorrellenos en los compuestos de madera y plástico. El material bibliográfico consultado se encuentra entre los años 2011 y 2021. En este estudio se discuten los beneficios ambientales, la limitación de las aplicaciones y los efectos de algunas nanopartículas en estos compuestos con plástico virgen y reciclado. Se concluye que los nanocompuestos de madera-plástico son una excelente opción de material con aplicaciones potenciales. No obstante, se sugiere visualizar las alternativas que existen para el uso de nanocompuestos madera-plástico en el diseño de producto.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

X. Zhou et al., “Efficient flame-retardant hybrid coatings on wood plastic composites by layer-by-layer assembly”, J. Clean. Prod., vol. 321, oct. 2021, doi: 10.1016/J.JCLEPRO.2021.128949.

S. Yang, J. Jiang, W. Duan, S. Bai y Q. Wang, “Production of sustainable wood-plastic composites from the nonmetals in waste printed circuit boards: Excellent physical performance achieved by solid-state shear milling”, Compos. Sci. Technol., vol. 200, nov. 2020, doi: 10.1016/J.COMPSCITECH.2020.108411.

J. Cruz-Salgado, S. A. Romero, E. Ruelas-Santoyo, R. Z. B. López y S. Álvarez-Rodríguez, “Slack-variable model in mixture experimental design applied to wood plastic composite”, J. King Saud Univ. - Eng. Sci., abr. 2021, doi: 10.1016/J.JKSUES.2021.03.017.

S. Ge et al., “Utilization of decayed wood for polyvinyl chloride/wood flour composites”, J. Mater. Res. Technol., vol. 12, pp. 862–869, may 2021, doi: 10.1016/J.JMRT.2021.03.026.

S. Zhang, T. Yang, L. Li y M. Wang, “Hierarchical porous 4A zeolites as a smoke suppressant for ammonium polyphosphate-treated wood composites: Role of mesopore diameter”, Microporous Mesoporous Mater., vol. 323, p. 111191, ag. 2021, doi: 10.1016/J.MICROMESO.2021.111191.

O. Adekomaya, T. Jamiru, R. Sadiku y Z. Huan, “A review on the sustainability of natural fiber in matrix reinforce-ment - A practical perspective”, J. Reinf. Plast. Compos., vol. 35, no. 1, pp. 3-7, 2016, doi: 10.1177/0731684415611974.

J. F. Hernández Gámez et al., “Mechanical reinforcement of thermoplastic vulcanizates using ground tyre rubber modified with sulfuric acid”, Polym. Compos., vol. 39, no. 1, pp. 229-237, 2018, doi: 10.1002/pc.23922.

A. Santoni, P. Bonfiglio, F. Mollica, P. Fausti, F. Pompoli y V. Mazzanti, “Vibro-acoustic optimisation of Wood Plastic Composite systems”, Constr. Build. Mater., vol. 174, pp. 730-740, 2018, doi: 10.1016/j.conbuildmat.2018.04.155.

M. Z. R. Khan, S. K. Srivastava y M. K. Gupta, “A state-of-the-art review on particulate wood polymer composites: Processing, properties and applications”, Polymer Testing, vol. 89, sept. 1, 2020, doi: 10.1016/j.polymertesting.2020.106721.

Focus Technology Co. “Outdoor Garden Lame Composite Decking Art Board WPC Material Price”. Made-in-China. 2021. https://tinyurl.com/yra83u85 (accesado: 2021).

Walmart. “Piso de bambú ilios innova vertical carbonizado 24 piezas cubre 2.2 m2 #Haya”.Walmart.com. https://tinyurl.com/ys5ymj5c (accesado: 2021).

Y. Zhang, F. Wang, Y. Zhang, J. Li y Y. Guo, “Effect of Al powder on mechanical properties and microstructure of wood-plastic composites by selective laser sintering”, Mater. Today Commun., vol. 27, jun. 2021, doi: 10.1016/J.MTCOMM.2021.102235.

J. Rao, Y. Zhou y M. Fan, “Revealing the Interface Structure and Bonding Mechanism of Coupling Agent Treated WPC”, Polym. vol. 10, no. 3, mar. 2018, doi: 10.3390/POLYM10030266.

M. J. Schwarzkopf y M. D. Burnard, “Wood-plastic composites—Performance and environmental impacts”, en En-vironmental Impacts of Traditional and Innovative Forest-based Bioproducts. Environmental Footprints and Eco-design of Products and Processes, Kutnar A., Muthu S., eds. Singapur: Springer, 2016, pp. 19-43.

M. J. Taufiq, M. R. Mansor y Z. Mustafa, “Characterisation of wood plastic composite manufactured from kenaf fibre reinforced recycled-unused plastic blend”, Compos. Struct., vol. 189, pp. 510-515, abr. 2018, doi: 10.1016/J.COMPSTRUCT.2018.01.090.

P. F. Sommerhuber, J. L. Wenker, S. Rüter y A. Krause, “Life cycle assessment of wood-plastic composites: Analys-ing alternative materials and identifying an environmental sound end-of-life option”, Resour. Conserv. Recycl., vol. 117, pp. 235-248, feb. 2017, doi: 10.1016/j.resconrec.2016.10.012.

D. B. Rocha y D. dos Santos, “Coupling effect of starch coated fibers for recycled polymer/wood composites”, Com-pos. Part B Eng., vol. 172, pp. 1-8, sept. 2019, doi: 10.1016/J.COMPOSITESB.2019.05.052.

Z. Sun, B. Sun, Y. Bai y Z. Gao, “Economical improvement on the performances of a soybean flour-based adhesive for wood composites via montmorillonite hybridization”, Compos. Part B Eng., vol. 217, jul. 2021, doi: 10.1016/J.COMPOSITESB.2021.108920.

J. T. Wu, K. Leung y G. M. Leung, “Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modeling study”, Lancet, vol. 395, no. 10225, pp. 689-697, 2020.

N. Doustmohammadi y R. Babazadeh, “Design of Closed Loop Supply Chain of Wood Plastic Composite (WPC) Industry”, ISEIS J. Environ. Informatics, vol. 35, no. 2, pp. 94-102, 2020, doi: 10.3808/jei.201900419.

G. Barteau et al., “Recycling of wood-reinforced poly-(propylene) composites: A numerical and experimental ap-proach”, Ind. Crops Prod., vol. 167, sept. 2021, doi: 10.1016/J.INDCROP.2021.113518.

Y. Zhou, P. Stanchev, E. Katsou, S. Awad y M. Fan, “A circular economy use of recovered sludge cellulose in wood plastic composite production: Recycling and eco-efficiency assessment”, Waste Manag., vol. 99, pp. 42-48, nov. 2019, doi: 10.1016/J.WASMAN.2019.08.037.

Y. Huang, S. Löschke y G. Proust, “In the mix: The effect of wood composition on the 3D printability and mechanical performance of wood-plastic composites”, Compos. Part C Open Access, vol. 5, jul. 2021, doi: 10.1016/j.jcomc.2021.100140.

A. Partanen and M. Carus, “Biocomposites, find the real alternative to plastic–An examination of biocomposites in the market”, Reinf. Plast., vol. 63, no. 6, pp. 317–321, 2019.

M. Fan y F. Fu, “Introduction: A perspective - natural fibre composites in construction”, en Advanced High Strength Natural Fibre Composites in Construction, M. Fan y F. Fu, eds. Elsevier, 2017, pp. 1-20.

R. Hossain, M. Tajvidi, D. Bousfield y D. J. Gardner, “Multi-layer oil-resistant food serving containers made using cellulose nanofiber coated wood flour composites”, Carbohydr. Polym., vol. 267, sept. 2021, doi: 10.1016/J.CARBPOL.2021.118221.

H. R. Taghiyari, M. Tajvidi, R. Taghiyari, G. I. Mantanis, A. Esmailpour y R. Hosseinpourpia, “Nanotechnology for wood quality improvement and protection”, en Nanomaterials for Agriculture and Forestry Applications (Micro and Nano Technologies), A. Husen, M. Jawaid, eds. Elsevier, en. 2020, cap. 19, pp. 469-489, doi: 10.1016/B978-0-12-817852-2.00019-6.

M. Gómez-Garzón, “Nanomateriales, Nanopartículas y Síntesis verde”, Rev. Repert. Med. y Cirugía, vol. 27, no. 2, pp. 75-80, 2018, doi: 10.31260/repertmedcir.v27.n2.2018.191.

J. Cypriyana et al., “Overview on toxicity of nanoparticles, it’s mechanism, models used in toxicity studies and dis-posal methods – A review”, Biocatal. Agric. Biotechnol., vol. 36, sept. 2021, doi: 10.1016/J.BCAB.2021.102117.

S. M. Yadav y K. Bin Yusoh, “Subsurface mechanical properties and subsurface creep behaviour of modified nanoclay-based wood–plastic composites studied by nanoindentation”, Polym. Bull., vol. 76, no. 5, pp. 2179-2196, ag. 2018, doi: 10.1007/S00289-018-2497-5.

H. R. Taghiyari, J. Norton y M. Tajvidi, “Effects of Nano-materials on Different Properties of Wood-Composite Materials”, en Bio-based Wood Adhesives, Z. He y H. Wan, eds. Boca Ratón: CRC Press, jun. 2017, cap. 14, pp. 310-339, doi: 10.1201/9781315369242.

M. S. Goyat et al., “Role of non-functionalized oxide nanoparticles on mechanical properties and toughening mecha-nisms of epoxy nanocomposites”, Ceram. Int., vol. 47, no. 16, pp. 22316-22344, ag. 2021, doi: 10.1016/J.CERAMINT.2021.05.083.

X. Ye, H. Wang, K. Zheng, Z. Wu, H. Zhou y K. Tian, “The interface designing and reinforced features of wood fi-ber/polypropylene composites: Wood fiber adopting nano-zinc-oxide-coating via ion assembly”, Compos. Sci. Tech-nol., vol. 124, pp. 1-9, 2016.

M. Kiaei, Y. R. Moghdam, B. Kord y A. Samariha, “The effect of Nano-MgO on the mechanical and flammability properties of hybrid nano composites from wood flour-polyethylene”, Maderas. Cienc. y Tecnol., vol. 19, no. 4, pp. 471-480, 2017.

M. R. M. Farahani y F. Banikarim, “Effect of nano-zinc oxide on decay resistance of wood-plastic composites”, Bio-Resources, vol. 8, no. 4, pp. 5715–5720, 2013, doi: 10.15376/biores.8.4.5715-5720.

D. Rasouli, N. T. Dintcheva, M. Faezipour, F. P. La Mantia, M. R. Mastri Farahani y M. Tajvidi, “Effect of nano zinc oxide as UV stabilizer on the weathering performance of wood-polyethylene composite”, Polym. Degrad. Stab., vol. 133, pp. 85-91, 2016, doi: 10.1016/j.polymdegradstab.2016.08.004.

B. Dang, Y. Chen, X. Shen, B. Chen, Q. Sun y C. Jin, “Fabrication of a Nano-ZnO/Polyethylene/Wood-Fiber Compo-site with Enhanced Microwave Absorption and Photocatalytic Activity via a Facile Hot-Press Method”, Mater. 2017, vol. 10, no. 11, p. 1267, nov. 2017, doi: 10.3390/MA10111267.

P. Bazant et al., “Wood flour modified by hierarchical Ag/ZnO as potential filler for wood-plastic composites with enhanced surface antibacterial performance”, Ind. Crops Prod., vol. 62, pp. 179-187, 2014, doi: 10.1016/j.indcrop.2014.08.028.

M. Masoudifar, B. Nosrati y R. Mohebbi, “Effect of surface treatment and titanium dioxide nanoparticles on the me-chanical and morphological properties of wood flour/polypropylene nanocomposites”, Int. Wood Prod. J., vol. 9, no. 4, pp. 176-185, 2018, doi: 10.1080/20426445.2018.1552398.

A. Kaymakci, “Effect of Titanium Dioxide on Some Mechanical, Thermal y Surface Properties of Wood-Plastic Nanocomposites”, BioResources, vol. 14, no. 1, pp. 1969-1979, 2019, https://tinyurl.com/pa9s46ce.

M. Farsi, “Effect of Nano-SiO2 and Bark Flour Content on the Physical and Mechanical Properties of Wood–Plastic Composites”, J. Polym. Environ., vol. 25, no. 2, pp. 308-314, 2017, doi: 10.1007/s10924-016-0813-4.

S. M. El-Bashir, “Thermal and mechanical properties of plywood sheets based on polystyrene/silica nanocomposites and palm tree fibers”, Polym. Bull., vol. 70, pp. 2035-2045, 2013, doi: 10.1007/s00289-013-0962-8.

C. Liu et al., “Light stabilizers added to the shell of co-extruded wood/high-density polyethylene composites to im-prove mechanical and anti-UV ageing properties”, R. Soc. Open Sci., vol. 5, no. 5, may. 2018, doi: 10.1098/RSOS.180074.

R. R. Devi y T. K. Maji, “Effect of nano-SiO2 on properties of wood/polymer/clay nanocomposites”, Wood Sci. Technol., vol. 46, no. 6, pp. 1151-1168, 2012, doi: 10.1007/s00226-012-0471-1.

X. Ye, H. Wang, Z. Wu, H. Zhou y X. Tian, “Synthesis and functional features of wood fiber-polypropylene materi-als: Based on wood fibers with assembling nano-coating via adopting simple in situ-hydrothermal mechanism”, Polym. Compos., vol. 39, no. 1, pp. 5-13, en. 2018, doi: 10.1002/PC.23894.

H. Zhou et al., “The reinforcement efficacy of nano-and microscale silica for extruded wood flour/HDPE compo-sites: the effects of dispersion patterns and interfacial modification”, J. Mater. Sci., vol. 53, pp. 1899-1910, 2018, doi: 10.1007/s10853-017-1650-0.

M. Mashkour y Y. Ranjbar, “Superparamagnetic Fe3O4@ wood flour/polypropylene nanocomposites: Physical and mechanical properties”, Ind. Crops Prod., vol. 111, pp. 47-54, 2018, doi: 10.1016/j.indcrop.2017.09.068.

A. Samariha y B. Bazyar, “Effect of nanosilica and aluminum hydroxide on thermal, flammability, and morphology properties of nanocomposite made of recycled high-density polyethylene and OCC flour”, BioResources, vol. 15, no. 2, pp. 3382-3393, 2020, doi: 10.15376/biores.15.2.3382-3393.

H. Reisi Nafchi, M. Abdouss, S. Kazemi Najafi, R. Mohebbi Gargari y M. Mazhar, “Effects of nano-clay particles and oxidized polypropylene polymers on improvement of the practical properties of wood-polypropylene composite”, Adv. Compos. Mater., vol. 24, no. 3, pp. 239-248, 2015, doi: 10.1080/09243046.2014.891341.

E. Bari, H. R. Taghiyari, O. Schmidt, A. Ghorbani y H. Aghababaei, “Effects of nano-clay on biological resistance of woodplastic composite against five wood-deteriorating fungi”, Maderas Cienc. y Tecnol., vol. 17, no. 1, pp. 205-212, 2015, doi: 10.4067/S0718-221X2015005000020.

H. R. Nafchi, M. Abdouss, S. K. Najafi, R. M. Gargari y M. Mazhar, “Effects of nano-clay particles and oxidized pol-ypropylene polymers on improvement of the thermal properties of wood plastic composite”, Maderas Cienc. y Tecnol., vol. 17, no. 1, pp. 45–54, 2015, doi: 10.4067/S0718-221X2015005000005.

A. Eshraghi, H. Khademieslam y I. Ghasemi, “Effect of weathering on physical and mechanical properties of hybrid nanocomposite based on polyethylene, woodflour and nanoclay”, Maderas. Cienc. y Tecnol., vol. 18, no. 4, pp. 617-626, 2016, doi: 10.4067/S0718-221X2016005000054.

A. Kaymakci, “Effect of sepiolite clay nanofibers on physical, mechanical, and thermal properties of wood-plastic nanocomposites”, J. Thermoplast. Compos. Mater., 2020, doi: 10.1177/0892705720939171.

M. E. Golmakani, T. Wiczenbach, M. Malikan, S. M. Mahoori y V. A. Eremeyev, “Experimental and Numerical In-vestigation of Tensile and Flexural Behavior of Nanoclay Wood-Plastic Composite”, Mater., vol. 14, no. 11, 2021, may. 2021, doi: 10.3390/MA14112773.

A. M. Alosaimi, M. A. Hussein, M. Y. Abdelaal, T. R. Sobahi y H. D. Rozman, “Polysulfone/wood flour/organoclay hybrid nanocomposites as efficient eco-friendly materials”, Compos. Interfaces, vol. 27, no. 8, pp. 717-736, 2020, doi: 10.1080/09276440.2019.1692615.

Y. R. Seo, B. J. Kim y S. Y. Lee, “Effects of Nanoclay and Glass Fiber on the Microstructural, Mechanical, Thermal, and Water Absorption Properties of Recycled WPCs”, J. Korean Wood Sci. Technol., vol. 47, no. 4, pp. 472-485, 2019, doi: 10.5658/WOOD.2019.47.4.472.

B. K. Deka, T. K. Maji y M. Mandal, “Study on properties of nanocomposites based on HDPE, LDPE, PP, PVC, wood and clay”, Polym. Bull., vol. 67, no. 9, pp. 1875-1892, 2011, doi: 10.1007/s00289-011-0529-5.

M. Nemati, H. K. Eslam, M. Talaeipour, B. Bazyar y A. Samariha, “Effect of nanoclay on flammability behavior and morphology of nanocomposites from wood flour and polystyrene materials”, BioResources, vol. 11, no. 1, pp. 748-758, 2016, doi: 10.15376/biores.11.1.748-758.

R. Zhang, X. Jin, X. Wen, Q. Chen y D. Quin, “Alumina nanoparticle modified phenol-formaldehyde resin as a wood adhesive”, Int. J. Adhes. Adhes., vol. 81, pp. 79-82, 2018, doi: 10.1016/j.ijadhadh.2017.11.013.

H. Alabduljabbar et al., “Effect of Alumina Nano-Particles on Physical and Mechanical Properties of Medium Den-sity Fiberboard”, Mater., vol. 13, no. 18, sept. 2020, doi: 10.3390/MA13184207.

B. Kord y M. Tajik, “Effect of organomodified montmorillonite on acoustic properties of wood-plastic nanocompo-sites”, J. Thermoplast. Compos. Mater., vol. 27, no. 6, pp. 731-740, 2014, doi: 10.1177/0892705712454864.

Q. K. Meng, M. Hetzer y D. De Kee, “PLA/clay/wood nanocomposites: Nanoclay effects on mechanical and thermal properties”, J. Compos. Mater., vol. 45, no. 10, pp. 1145-1158, 2011, doi: 10.1177/0021998310381541.

M. Zahedi, H. Khanjanzadeh, H. Pirayesh y M. A. Saadatnia, “Utilization of natural montmorillonite modified with dimethyl, dehydrogenated tallow quaternary ammonium salt as reinforcement in almond shell flour-polypropylene bio-nanocomposites”, Compos. Part B Eng., vol. 71, pp. 143-151, 2015, doi: 10.1016/j.compositesb.2014.11.009.

B. Kord, A. Varshoei y V. Chamany, “Influence of chemical foaming agent on the physical, mechanical, and morpho-logical properties of HDPE/wood flour/nanoclay composites”, J. Reinf. Plast. Compos., vol. 30, no. 13, pp. 1115-1124, 2011, doi: 10.1177/0731684411417200.

M. A. Danesh, H. ZiaeiTabari, R. Hosseinpourpia, N. Nazarnezhad y M. Shamse, “Investigation of the morphological and thermal properties of waste newsprint/ recycled polypropylene/ nanoclay composite”, BioResources, vol. 7, no. 1, pp. 936-945, 2012, https://tinyurl.com/2p84h3ep.

B. Kord, “Effects of compatibilizer and nanolayered silicate on physical and mechanical properties of PP/bagasse composites”, Turkish J. Agric. For., vol. 36, no. 4, pp. 510–517, 2012, doi: 10.3906/tar-1105-4.

S. V. Pol’shchikov et al., “Composite materials based on graphene nanoplatelets and polypropylene derived via in situ polymerization”, Nanotechnologies Russ., vol. 8, no. 1-2, pp. 69–80, 2013, doi: 10.1134/S1995078013010114.

S. Ge et al., “Potential use of different kinds of carbon in production of decayed wood plastic composite”, Arab. J. Chem., vol. 11, no. 6, pp. 838-843, sept. 2018, doi: 10.1016/J.ARABJC.2017.12.026.

S. Sheshmani, A. Ashori y M. Arab, “Wood plastic composite using graphene nanoplatelets”, Int. J. Biol. Macromol., vol. 58, pp. 1-6, 2013, doi: 10.1016/j.ijbiomac.2013.03.047.

P. Baishya, T. Maji y T. K. Maji, “Functionalization of MWCNT and their application in properties development of green wood nanocomposite”, Carbohydr. Polym., vol. 149, pp. 332-339, 2016, doi: 10.1016/j.carbpol.2016.04.117.

B. Kord y M. Roohani, “Water transport kinetics and thickness swelling behavior of natural fiber-reinforced HDPE/CNT nanocomposites”, Compos. Part B Eng., vol. 126, pp. 94-99, oct. 2017, doi: 10.1016/j.compositesb.2017.06.008.

A. T. Farsheh, M. Talaeipour, A. H. Hemmasi, H. Khademieslam y I. Ghasemi, “Investigation on the mechanical and morphological properties of foamed nanocomposites based on wood flour/PVC/multi-walled carbon nanotube”, Bio-Resources, vol. 6, no. 1, pp. 841-852, 2011, doi: 10.15376/biores.6.1.841-852.

A. Ashori, S. Sheshmani y F. Farhani, “Preparation and characterization of bagasse/HDPE composites using multi-walled carbon nanotubes”, Carbohydr. Polym., vol. 92, no. 1, pp. 865-871, 2013, doi: 10.1016/j.carbpol.2012.10.010.

N. Ayrilmis y A. Kaymakci, “Physical, mechanical, and thermal properties of wood plastic nanocomposites rein-forced with multi walled carbon nanotubes”, presentado en InWood2015: Innovations in wood materials and processes, Brno, República Checa, 2015.

Y. Zhang, Y. Cui, S. Wang, X. Zhao, F. Wang y G. Wu, “Effect of microwave treatment on bending properties of car-bon nanotube/wood plastic composites by selective laser sintering”, Mater. Lett., vol. 267, may. 2020, doi: 10.1016/J.MATLET.2020.127547.

Y. Liu et al., “Fluorescent thermochromic wood-based composite phase change materials based on aggregation-induced emission carbon dots for visual solar-thermal energy conversion and storage”, Chem. Eng. J., vol. 424, nov. 2021, doi: 10.1016/J.CEJ.2021.130426.

B. K. Deka, P. Baishya y T. K. Maji, “Synergistic effect of SiO2, ZnO and nanoclay on mechanical and thermal proper-ties of wood polymer nanocomposite”, J. Thermoplast. Compos. Mater., vol. 27, no. 4, 2014, doi: 10.1177/0892705712452739.

P. Bisht, K. K. Pandey y H. C. Barshilia, “Photostable transparent wood composite functionalized with an UV-absorber”, Polym. Degrad. Stab., vol. 189, jul. 2021, doi: 10.1016/J.POLYMDEGRADSTAB.2021.109600.

A. M. Youssef, M. S. Hasanin, M. E. Abd El-Aziz y O. M. Darwesh, “Green, economic, and partially biodegradable wood plastic composites via enzymatic surface modification of lignocellulosic fibers”, Heliyon, vol. 5, no. 3, mar. 2019, doi: 10.1016/j.heliyon.2019.e01332.

I. Turku, T. Kärki y A. Puurtinen, “Durability of wood plastic composites manufactured from recycled plastic”, Heliyon, vol. 4, no. 3, mar. 2018, doi: 10.1016/j.heliyon.2018.e00559.

M. A. Binhussain y M. M. El-Tonsy, “Palm leave and plastic waste wood composite for out-door structures”, Con-str. Build. Mater., vol. 47, pp. 1431-1435, oct. 2013, doi: 10.1016/j.conbuildmat.2013.06.031.

L. Zhang, Z. Chen, H. Dong, S. Fu, L. Ma y X. Yang, “Wood plastic composites based wood wall’s structure and thermal insulation performance”, J. Bioresour. Bioprod., vol. 6, no. 1, pp. 65-74, feb. 2021, doi: 10.1016/j.jobab.2021.01.005.

N. Dwivedi, A. P. Khare y S. Haq, “Wood Plastic Composite: Emerging Material for an Environmental Safety—A Review”, en Advances in Clean Energy Technologies, P. V. Baredar, S. Tangellapalli y C. S. Solanki, eds. Springer, 2021, pp. 85-99, doi: 10.1007/978-981-16-0235-1_7.

Fortune Business Insights, “Wood plastic Composite Market size, share & Industry Analysis, By Material (Polyethylene, polypropylene, Polyvinyl Chloride and others), By Application (Decking, Automotive, Sliding & fencing, Technical Application, Furniture, Consumer Goods and others)”, reporte FBI102821, 2020. Accesado: 2020. [En línea]. Disponible: https://www.fortunebusinessinsights.com/wood-plastic-composite-market-102821.

Dow®, “Wood plastic composites materials and additives”, Dow.com, 2021. https://tinyurl.com/326vucj6 (ac-cesado: 2021).

Woodplastic, “Woodplastic products”, 2021, Woodplastic.com. https://www.woodplastic.eu/ (accesado: 2021).

JELU-WERK J. Ehrler GmbH & Co. KG, “Jeluplast Wood Plastic Composites”, jeluplast.com. https://www.jeluplast.com/en/ (accesado: 2021).

Oakio Plastic Wood Building Materials Co., “Oakio products”, okaio.com. https://tinyurl.com/3yur6pbt (accesado: 2021).

AZO GmbH + Co. KG, “Azo products”, azo.com. https://www.azo.com/ (accesado: 2021).

Wuhu Haoxuan Wood Plastic Composite Co., “Hosung Products”, hosungwpc.com. https://www.hosungwpc.com/ (accesado: 2021).

Wuhu Haoxuan Wood Plastic Composite Co., “Floresta products”, hosungwpc.com. https://floresta.in/ (accesado: 2021).

Seven Trust, “Nano Wood Plastic Composite”, sp6zwr.com. https://sp6zwr.com.pl/lm2/3928-Nano-Wood-Plastic-Composite.html (accesado: 2021).

D. Friedrich and A. Luible, “Investigations on ageing of wood-plastic composites for outdoor applications: A meta-analysis using empiric data derived from diverse weathering trials”, Constr. Build. Mater., vol. 124, pp. 1142-1152, oct. 2016, doi: 10.1016/j.conbuildmat.2016.08.123.

I. Bochkov, M. Varkale, R. M. Meri, J. Zicans, P. Franciszczak y A. K. Bledzki, “Selected aspects of wear and surface properties of polypropylene based wood-polymer composites”, Green Tribol., vol. 1, no. 1, pp. 4-8, mar. 2018, doi: 10.15544/GREENTRIBO.2018.02.

F. Jamili, M. Mirjalili y H. A. Zamani, “Antibacterial wood-plastic composite produced from treated and natural dyed wood fibers”, Polym. Polym. Compos., vol. 27, no. 6, pp. 347–355, may. 2019, doi: 10.1177/0967391119847537.

A. Keskisaari y T. Kärki, “The use of waste materials in wood-plastic composites and their impact on the profitability of the product”, Resour. Conserv. Recycl., vol. 134, pp. 257-261, jul. 2018, doi: 10.1016/J.RESCONREC.2018.03.023.

P. F. Sommerhuber, T. Wang y A. Krause, “Wood–plastic composites as potential applications of recycled plastics of electronic waste and recycled particleboard”, J. Clean. Prod., vol. 121, pp. 176-185, may. 2016, doi: 10.1016/J.JCLEPRO.2016.02.036.

J. Beigbeder, L. Soccalingame, D. Perrin, J. C. Bénézet y A. Bergeret, “How to manage biocomposites wastes end of life? A life cycle assessment approach (LCA) focused on polypropylene (PP)/wood flour and polylactic acid (PLA)/flax fibres biocomposites”, Waste Manag., vol. 83, pp. 184-193, en. 2019, doi: 10.1016/J.WASMAN.2018.11.012.

V. Kočí, “Comparisons of environmental impacts between wood and plastic transport pallets”, Sci. Total Environ., vol. 686, pp. 514-528, oct. 2019, doi: 10.1016/J.SCITOTENV.2019.05.472.

D. Basalp, F. Tihminlioglu, S. C. Sofuoglu, F. Inal y A. Sofuoglu, “Utilization of Municipal Plastic and Wood Waste in Industrial Manufacturing of Wood Plastic Composites”, Waste Biomass Valorization, vol. 11, no. 10, pp. 5419-5430, mar. 2020, doi: 10.1007/S12649-020-00986-7.

R. K. Malviya, R. Purohit y R. K. Singh, “Life–Cycle Assessment (LCA) of Plastic–Wood Composites”, en Wood Polymer Composites, S. Mavinkere, J. Parameswaranpillai, M. Hemanth y S. Siengchin, eds. Singapur: Springer, 2021, pp. 233-253, doi: 10.1007/978-981-16-1606-8_12.

A. Askadskii y T. Matseevich, Structure and Properties of Wood-Polymer Composites (WPC), 1.a ed. Cambridge Scholars Publishing, 2019.

Y.-C. Chiou, M.-Y. Shen, C.-L. Chiang, Y.-L. Li y W.-M. Lai, “Effects of Environmental Aging on the Durability of Wood-Flour Filled Recycled PET/PA6 Wood Plastic Composites”, J. Polym. Environ. 2021, pp. 1-14, ag. 2021, doi: 10.1007/S10924-021-02268-2.

D. Friedrich, “Thermoplastic moulding of Wood-Polymer Composites (WPC): A review on physical and mechan-ical behaviour under hot-pressing technique”, Compos. Struct., vol. 262, abr. 2021, doi: 10.1016/J.COMPSTRUCT.2021.113649.

M. Hyvärinen, M. Ronkanen y T. Kärki, “The effect of the use of construction and demolition waste on the mechani-cal and moisture properties of a wood-plastic composite”, Compos. Struct., vol. 210, pp. 321-326, feb. 2019, doi: 10.1016/J.COMPSTRUCT.2018.11.063.

F. Faure, A. Perrot, S. Pimbert y T. Lecompte, “Water absorption measurements on WPCs: Assessment of size and direction dependencies in order to design fast and accurate quality control tests”, Polym. Test., vol. 77, ag. 2019, doi: 10.1016/J.POLYMERTESTING.2019.105899.

H. Mrad, S. Alix, S. Migneault, A. Koubaa y P. Perré, “Numerical and experimental assessment of water absorption of wood-polymer composites”, Measurement, vol. 115, pp. 197-203, feb. 2018, doi: 10.1016/J.MEASUREMENT.2017.10.011.

Y. M. Lopez, F. G. Gonçalves, J. B. Paes, D. Gustave, A. C. Theodoro Nantet y T. J. Sales, “Resistance of wood plastic composite produced by compression to termites Nasutitermes corniger (Motsch.) and Cryptotermes brevis (Walker)”, Int. Biodeterior. Biodegradation, vol. 152, ag. 2020, doi: 10.1016/J.IBIOD.2020.104998.

K. S. Shiny et al., “A new approach to wood protection: Preliminary study of biologically synthesized copper oxide nanoparticle formulation as an environmental friendly wood protectant against decay fungi and termites”, Maderas. Cienc. y Tecnol., vol. 21, no. 3, pp. 347-356, 2019, doi: 10.4067/S0718-221X2019005000307.

S. Fan, X. Gao, D. Zhu, S. Guo y Z. li, “Enhancement mechanism of the organic nano-montmorillonite and its effect on the properties of wood fiber/HDPE composite”, Ind. Crops Prod., vol. 169, oct. 2021, doi: 10.1016/J.INDCROP.2021.113634.

Descargas

Publicado

2021-12-08

Cómo citar

Montes-Villagrán, A., & Martel-Estrada, S. A. (2021). Posibilidades de nanocompuestos madera-plástico en el diseño de productos. Cultura Científica Y Tecnológica, 18(3), 1–21. https://doi.org/10.20983/culcyt.2021.3.3.1

Número

Sección

Edición Especial "Innovación en el Diseño de Producto"