Remoción de cefalosporinas con aluminosilicatos

Autores/as

DOI:

https://doi.org/10.20983/culcyt.2021.1.3.3

Palabras clave:

aluminosilicatos, cefalosporinas, contaminantes emergentes, materiales adsorbentes

Resumen

La presencia de contaminantes emergentes, como los antibióticos, representa una gran preocupación debido a los efectos que causa en los ecosistemas y la salud de los humanos. El mayor impacto de este tipo de contaminantes es la resistencia bacteriana en medios naturales, principalmente en el agua, y aunque existen métodos para removerlos, las trazas de antibióticos no pueden ser retiradas completamente por las plantas tratadoras de aguas residuales (PTAR). La adsorción es uno de los procesos para remover antibióticos del agua residual y los aluminosilicatos (Al-Si), naturales o modificados, son compuestos adsorbentes que no han recibido la suficiente atención, sin embargo, algunos estudios han demostrado su eficacia para remover antibióticos betalactámicos, como las cefalosporinas de primera, segunda, tercera y cuarta generación. Precisamente, esta familia de medicamentos es la principal causante de resistencia bacteriana en ambientes nosocomiales y naturales. El uso de Al-Si modificados con surfactantes, como bromuro de hexadeciltimetilamonio (HDTMA-Br), bromuro dodeciltrimetil amonio (DTAB) y nanopartículas de óxidos, es una alternativa promisoria para el tratamiento avanzado de aguas contaminadas con antibióticos. Algunas investigaciones han encontrado una mejora de 61% en el proceso de sorción de cefalexina con Al-Si modificados con nanopartículas metálicas y, por otro lado, un aumento del 65% en el proceso de remoción del mismo antibiótico cuando son modificados con Fe3O4. Lo anterior pone de manifiesto que la modificación superficial de los Al-Si mejoran considerablemente el proceso de adsorción de cefalosporinas. 

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Zaira Magnolia Rivera Pérez, Universidad Autónoma de Ciudad Juárez

Estudiante de Programa de Maestría Ciencias Químico-Biológicas

Instituto de Ciencias Biomédicas

Universidad Autónoma de Ciudad Juárez

Jonatan Torres Pérez, Instituto de Ciencias Biomédicas Universidad Autónoma de Ciudad Juárez

PTC Departamento de Ciencias Químico-Biológicas

Simón Yobanny Reyes López, Instituto de Ciencias Biomédicas Universidad Autónoma de Ciudad Juárez

PTC Departamento de Ciencias Químico-Biológicas

Citas

S. De Gisi, G. Lofrano, M. Grassi y M. Notarnicola, “Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review”, Sustain. Mater. Technol., vol. 9, pp. 10-40, 2016, doi: 10.1016/j.susmat.2016.06.002.

B. A. Rocha-Gutiérrez, M. R. Peralta-Pérez y F. J. Zavala-Díaz de la Serna, “Revisión global de los contaminantes emergentes PBDE y el caso particular de México”, Rev. Int. Contam. Ambient., vol. 31, no. 3, pp. 311-320, 2015.

O. Cárdenas, L. Navarro, P. Loeza, O. Del Río y R. Jiménez, “Perfiles de resistencia a antibióticos y metales pesados en Pseudomonas aeruginosa potencialmente patógenas aisladas de agua de uso agrícola”, Rev. Electrónica Nov. Sci., vol. 9, pp. 97-112, 2017.

M. Grassi, L. Rizzo y A. Farina, “Endocrine disruptors compounds, pharmaceuticals and personal care products in urban wastewater: Implications for agricultural reuse and their removal by adsorption process”, Environ. Sci. Pollut. Res., vol. 20, no. 6, pp. 3616-3628, 2013, doi: 10.1007/s11356-013-1636-7.

G. Tchobanoglous, F. Burton y H. D. Stensel, “Wastewater engineering: An Overview”, en Wastewater Engineering - Treatment, Disposal and Reuse. Nueva York: McGraw-Hill Education, 1991, cap. 1, pp. 1-24.

I. Ali, M. Asim y T. A. Khan, “Low cost adsorbents for the removal of organic pollutants from wastewater”, J. Environ. Manage., vol. 113, pp. 170-183, 2012, doi: 10.1016/j.jenvman.2012.08.028.

H. Blaak, G. Lynch, R. Italiaander, R. A. Hamidjaja, F. M. Schets y A. M. R. De Husman, “Multidrug-resistant and extended spectrum beta-lactamase-producing Escherichia coli in dutch surface water and wastewater”, PLoS One, vol. 10, no. 6, pp. 1-16, 2015, doi: 10.1371/journal.pone.0127752.

A. Y. C. Lin, T. H. Yu y S. K. Lateef, “Removal of pharmaceuticals in secondary wastewater treatment processes in Taiwan”, J. Hazard. Mater., vol. 167, no. 1-3, pp. 1163–1169, 2009, doi: 10.1016/j.jhazmat.2009.01.108.

CONAGUA, “Plantas de tratamiento de agua residual (nacional)”, SINA.conagua.gob.mx, 2019. Disponible: http://sina.conagua.gob.mx/sina/tema.php?tema=plantasTratamiento&ver=reporte&o=0&n=nacional (consultado: feb. 6, 2021).

S. E. Manahan, Introducción a la Química Ambiental. Barcelona: UNAM-Reverté Ediciones, S.A. de C.V., 2007, p. 320.

E. Brillas, “A review on the degradation of organic pollutants in waters by UV photoelectro-fenton and solar photoelectro-fenton”, J. Braz. Chem. Soc., vol. 25, no. 3, pp. 393-417, 2014, doi: 10.5935/0103-5053.20130257.

S. J. T. Pollard, G. D. Fowler, C. J. Sollars y R. Perry, “Low-cost adsorbents for waste and wastewater treatment: a review”, Sci. Total Environ., vol. 116, no. 1-2, pp. 31-52, 1992, doi: 10.1016/0048-9697(92)90363-W.

D. Vukelic et al., “Eco-design of a low-cost adsorbent produced from waste cherry kernels”, J. Clean. Prod., vol. 174, pp. 1620-1628, 2018, doi: 10.1016/j.jclepro.2017.11.098.

M. Yoldi, E. G. Fuentes, S. A. Korili y A. Gil, “Zeolite synthesis from industrial wastes”, Microporous Mesoporous Mater., vol. 287, pp. 183-191, 2019, doi: 10.1016/j.micromeso.2019.06.009.

A. Peña-Álvarez, Araceli y Castillo-Alanís, “Identificación y cuantificación de contaminantes emergentes en aguas residuales por microextracción en fase sólida-cromatografía de gases-espectrometría de masas (MEFS-CG-EM)”, TIP, vol. 18, no. 1, pp. 29-42, 2015, doi: 10.1016/j.recqb.2015.05.003.

C. Jiménez-Cartagena, “Contaminantes orgánicos emergentes en el ambiente: Productos farmacéuticos”, Rev. Lasallista Investig., vol. 8, no. 2, pp. 143-153, 2011.

J. B. Ellis, “Pharmaceutical and personal care products (PPCPs) in urban receiving waters”, Environ. Pollut., vol. 144, no. 1, pp. 184-189, 2006, doi: 10.1016/j.envpol.2005.12.018.

T. Heberer, “Tracking persistent pharmaceutical residues from municipal sewage to drinking water”, J. Hydrol., vol. 266, no. 3, pp. 175-189, 2002, doi: 10.1016/S0022-1694(02) 00165-8.

B. Halling-Sørensen, S. Nors Nielsen, P. F. Lanzky, F. Ingerslev, H. C. Holten Lützhøft y S. E. Jørgensen, “Occurrence, fate and effects of pharmaceutical substances in the environment- A review”, Chemosphere, vol. 36, no. 2, pp. 357-393, 1998, doi: 10.1016/S0045-6535(97)00354-8.

F. Baquero, J.-L. Martínez y R. Cantón, “Antibiotics and antibiotic resistance in water environments”, Curr. Opin. Biotechnol., vol. 19, no. 3, pp. 260-265, 2008, doi: 10.1016/j.copbio.2008.05.006.

C. R. Ohoro, A. O. Adeniji, A. I. Okoh y O. O. Okoh, “Distribution and chemical analysis of pharmaceuticals and personal care products (PPCPs) in the environmental systems: A review”, Int. J. Environ. Res. Public Health, vol. 16, no. 17, 2019, doi: 10.3390/ijerph16173026.

B. J. Richardson, P. K. S. Lam y M. Martin, “Emerging chemicals of concern: pharmaceuticals and personal care products (PPCPs) in Asia, with particular reference to Southern China”, Mar Pollut Bull, vol. 50, no. 9, pp. 913-920, 2005, doi: 10.1016/j.marpolbul.2005.06.034.

M. D. Hernando, M. Mezcua, A. R. Fernández-Alba y D. Barceló, “Environmental Risk Assessment of Pharmaceutical Residues in Wastewater Effluents, Surface Waters and Sediments”, Talanta, vol. 69, pp. 334-342, 2006, doi: 10.1016/j.talanta.2005.09.037.

Z. Hoyett, “Pharmaceuticals and Personal Care Products: Risks, Challenges y Solutions”, Risk Assess., 2018, doi: 10.5772/intechopen.70799.

M. Carballa et al., “Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant”, Water Res., vol. 38, no. 12, pp. 2918-2926, 2004, doi: 10.1016/j.watres.2004.03.029.

J. Park et al., “Distribution and removal of pharmaceuticals in liquid and solid phases in the unit processes of sewage treatment plants”, Int. J. Environ. Res. Public Health, vol. 17, no. 3, 2020, doi: 10.3390/ijerph17030687.

M. Woolhouse, M. Ward, B. van Bunnik y J. Farrar, “Antimicrobial resistance in humans, livestock and the wider environment”, Philos. Trans. R. Soc. B Biol. Sci., vol. 370, no. 1670, p. 20140083, jun. 2015, doi: 10.1098/rstb.2014.0083.

C. Bouki, D. Venieri y E. Diamadopoulos, “Detection and fate of antibiotic resistant bacteria in wastewater treatment plants: A review”, Ecotoxicol. Environ. Saf., vol. 91, pp. 1-9, 2013, doi: 10.1016/j.ecoenv.2013.01.016.

A. Carattoli, “Animal reservoirs for extended spectrum β-lactamase producers”, Clin. Microbiol. Infect., vol. 14, pp. 117-123, 2008, doi: 10.1111/j.1469-0691.2007.01851.x.

L. C. Snow et al., “Risk factors associated with extended spectrum beta-lactamase Escherichia coli (CTX-M) on dairy farms in North West England and North Wales”, Prev. Vet. Med., vol. 106, no. 3, pp. 225-234, 2012, doi: 10.1016/j.prevetmed.2012.03.009.

K. Veldman, A. Kant, C. Dierikx, A. van Essen-Zandbergen, B. Wit y D. Mevius, “Enterobacteriaceae resistant to third-generation cephalosporins and quinolones in fresh culinary herbs imported from Southeast Asia”, Int. J. Food Microbiol., vol. 177, pp. 72-77, 2014, doi: 10.1016/j.ijfoodmicro.2014.02.014.

H. Blaak, P. de Kruijf, R. A. Hamidjaja, A. H. A. M. van Hoek, A. M. de Roda Husman y F. M. Schets, “Prevalence and characteristics of ESBL-producing E. coli in Dutch recreational waters influenced by wastewater treatment plants”, Vet. Microbiol., vol. 171, no. 3, pp. 448-459, 2014, doi: 10.1016/j.vetmic.2014.03.007.

L. Schages, F. Wichern, R. Kalscheuer y D. Bockmühl, “Winter is coming – Impact of temperature on the variation of beta-lactamase and mcr genes in a wastewater treatment plant”, Sci. Total Environ., vol. 712, 2020, doi: 10.1016/j.scitotenv.2020.136499.

P. P. Amador, R. M. Fernandes, M. C. Prudêncio, M. P. Barreto y I. M. Duarte, “Antibiotic resistance in wastewater: Occurrence and fate of Enterobacteriaceae producers of Class A and Class C β-lactamases”, J. Environ. Sci. Heal. Part A, vol. 50, no. 1, pp. 26-39, en. 2015, doi: 10.1080/10934529.2015.964602.

M. Caltagirone et al., “Occurrence of Extended Spectrum β-Lactamases, KPC-Type y MCR-1.2-Producing Enterobacteriaceae from Wells, River Water, and Wastewater Treatment Plants in Oltrepò Pavese Area, Northern Italy”, Frontiers in Microbiology, vol. 8, 2017, doi: 10.3389/fmicb.2017.02232.

A. Endimiani, F. Perez y R. A. Bonomo, “Cefepime: a reappraisal in an era of increasing antimicrobial resistance”, Expert Rev. Anti. Infect. Ther., vol. 6, no. 6, pp. 805-824, 2008, doi: 10.1586/14787210.6.6.805.

D. Cacace et al., “Antibiotic resistance genes in treated wastewater and in the receiving water bodies: A pan-European survey of urban settings”, Water Res., vol. 162, pp. 320-330, 2019, doi: 10.1016/j.watres.2019.06.039.

X.-X. Zhang, T. Zhang y H. H. P. Fang, “Antibiotic resistance genes in water environment”, Appl. Microbiol. Biotechnol., vol. 82, no. 3, pp. 397-414, 2009, doi: 10.1007/s00253-008-1829-z.

I. George, P. Crop y P. Servais, “Fecal coliform removal in wastewater treatment plants studied by plate counts and enzymatic methods”, Water Res., vol. 36, no. 10, pp. 2607-2617, 2002, doi: 10.1016/S0043-1354(01)00475-4.

V. K. Gupta, P. J. M. Carrott y M. M. L. Ribeiro Carrott & Suhas, “Low-Cost Adsorbents: Growing Approach to Wastewater Treatment—a Review”, Crit. Rev. Environ. Sci. Technol., vol. 39, no. 10, pp. 783-842, 2009, doi: 10.1080/10643380801977610.

H. B. Quesada, A. Takaoka Alves Baptista, L. F. Cusioli, D. Seibert, C. de Oliveira Bezerra y R. Bergamasco, “Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: A review”, Chemosphere, vol. 222, pp. 766-780, 2019, doi: 10.1016/j.chemosphere.2019.02.009.

E. Worch, Adsorption technology in water treatment. Fundamentals, Processes, and Modeling, 1.a ed. Berlín, Boston: De Gruyter, 2012.

A. I. Liapis, Fundamentals of adsorption. New York: Engineering Foundation, 1987.

D. A. Clifford, “Ion exchange and inorganic adsorption,” en Water Quality and Treatment: A Handbook of Community Water Supplies, 5.a ed. Nueva York: Mc Graw-Hill, Inc., cap. 9, 1999.

A. González-Ortiz, J. J. Ramírez-García y M. J. Solache-Ríos, “Kinetic and Thermodynamic Behavior on the Sorption of Clindamycin from an Aqueous Medium by Modified Surface Zeolitic Tuffs”, Water. Air. Soil Pollut., vol. 229, no. 10, 2018, doi: 10.1007/s11270-018-3970-3.

N. P. Cheremisinoff, Handbook of Water and Wastewater Treatment Technologies. Boston: Butterworth-Heinemann, 2002.

W. K. Backhaus, E., Klumpp, H.-D. Narres y M. J. Schwuger, “Adsorption of 2,4-Dichlorophenol on Montmorillonite and Silica: Influence of Nonionic Surfactants”, J. Colloid Interface, vol. 242, no. 1, 2001, doi: 10.1006/jcis.2001.7781.

M. J. Martin, A. Artola, M. D. Balaguer y M. Rigola, “Activated carbons developed from surplus sewage sludge for the removal of dyes from dilute aqueous solutions”, Chem. Eng. J., vol. 94, no. 3, pp. 231-239, 2003, doi: 10.1016/S1385-8947(03)00054-8.

S. Rio, C. Faur-Brasquet, L. Le Coq, P. Courcoux y P. Le Cloirec, “Experimental design methodology for the preparation of carbonaceous sorbents from sewage sludge by chemical activation-application to air and water treatments”, Chemosphere, vol. 58, no. 4, pp. 423-437, 2005, doi: 10.1016/j.chemosphere.2004.06.003.

R. K. Gautam, A. Mudhoo, G. Lofrano y M. C. Chattopadhyaya, “Biomass-derived biosorbents for metal ions sequestration: Adsorbent modification and activation methods and adsorbent regeneration”, J. Environ. Chem. Eng., vol. 2, no. 1, pp. 239-259, 2014, doi: 10.1016/j.jece.2013.12.019.

G. Crini, “Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment”, Prog. Polym. Sci., vol. 30, no. 1, pp. 38-70, 2005, doi: 10.1016/j.progpolymsci.2004.11.002.

J. Q. Jiang, N. J. D. Graham, C. M. André, G. H. Kelsall, N. P. Brandon y M. J. Chipps, “Comparative performance of an electrocoagulation/flotation system with chemical coagulation/dissolved air flotation: a pilot-scale trial”, Water Supply, vol. 2, no. 1, pp. 289-297, en. 2002, doi: 10.2166/ws.2002.0034.

M. Piña-Soberanis, A. Martín-Domínguez, C. A. González-Ramírez, F. Prieto-García, A. Guevara-Lara y J. E. García-Espinoza, “Revisión de variables de diseño y condiciones de operación en la electrocoagulación”, Rev. Mex. Ing. Química, vol. 10, no. 2, pp. 257-271, 2011.

J. R. Parga et al., “Arsenic removal via electrocoagulation from heavy metal contaminated groundwater in La Comarca Lagunera México”, J. Hazard. Mater., vol. 124, no. 1-3, pp. 247-254, 2005, doi: 10.1016/j.jhazmat.2005.05.017.

N. Sapawe et al., “Cost-effective microwave rapid synthesis of zeolite NaA for removal of methylene blue”, Chem. Eng. J., vol. 229, pp. 388-398, 2013, doi: 10.1016/j.cej.2013.06.005.

B. A. Shah, H. D. Patel y A. V Shah, “Equilibrium and kinetic studies of the adsorption of basic dye from aqueous solutions by zeolite synthesized from bagasse fly ash”, Environ. Prog. Sustain. Energy, vol. 30, no. 4, pp. 549-557, dic. 2011, doi: 10.1002/ep.10505.

P. Gao, Y. Feng, Z. Zhang, J. Liu y N. Ren, “Comparison of competitive and synergetic adsorption of three phenolic compounds on river sediment”, Environ. Pollut., vol. 159, no. 10, pp. 2876-2881, 2011, doi: 10.1016/j.envpol.2011.04.047.

J. J. Liu, X. C. Wang y B. Fan, “Characteristics of PAHs adsorption on inorganic particles and activated sludge in domestic wastewater treatment”, Bioresour. Technol., vol. 102, no. 9, pp. 5305-5311, 2011, doi: 10.1016/j.biortech.2010.12.063.

S. Chauhan y L. Pathania, “Impact of cationic surfactants on cefepime properties in aqueous medium: Micellization and characterization of microenvironment”, J. Mol. Liq., pp. 953-962, 2018, doi: 10.1016/j.molliq.2018.10.071.

Y. Al-Degs, M. A. M. Khraisheh, S. J. Allen y M. N. A. Ahmad, “Sorption behavior of cationic and anionic dyes from aqueous solution on different types of activated carbons”, Sep. Sci. Technol., vol. 36, no. 1, pp. 91-102, 2001, doi: 10.1081/SS-100000853.

W. A. Cabrera-Lafaurie, F. R. Román y A. J. Hernández-Maldonado, “Removal of salicylic acid and carbamazepine from aqueous solution with Y-zeolites modified with extraframework transition metal and surfactant cations: Equilibrium and fixed-bed adsorption”, J. Environ. Chem. Eng., vol. 2, no. 2, pp. 899-906, 2014, doi: 10.1016/j.jece.2014.02.008.

N. Jiang, R. Shang, S. G. J. Heijman y L. C. Rietveld, “High-silica zeolites for adsorption of organic micro-pollutants in water treatment: A review,” Water Res., vol. 144, pp. 145-161, 2018, doi: 10.1016/j.watres.2018.07.017.

S. Kesraoui-Ouki, C. R. Cheeseman y R. Perry, “Natural zeolite utilisation in pollution control: A review of applications to metals’ effluents”, J. Chem. Technol. Biotechnol., vol. 59, no. 2, pp. 121-126, 1994, doi: 10.1002/jctb.280590202.

L. B. McCusker y C. Baerlocher, “Zeolite structures”, en Introduction to Zeolite Science and Practice (Serie Studies in Surface Science and Catalysis, vol. 137), cap. 3. EUA: Elsevier, 2001, pp. 37-67, doi: 10.1016/s0167-2991(01)80244-5.

X. Jia et al., “Heteroresistance to cefepime in Pseudomonas aeruginosa bacteraemia”, Int. J. Antimicrob. Agents, vol. 55, no. 3, mar. 2020, doi: 10.1016/j.ijantimicag.2019.10.013.

J. Reungoat, J. S. Pic, M. H. Manéro y H. Debellefontaine, “Adsorption of Nitrobenzene from Water onto High Silica Zeolites and Regeneration by Ozone”, Sep. Sci. Technol., vol. 42, no. 7, pp. 1447-1463, may. 2007, doi: 10.1080/01496390701289948.

R. C. Bansal y M. Goyal, Activated Carbon Adsorption, 1.a ed. Nueva York: CRC Press, 2005.

N. Jiang, R. Shang, S. G. J. Heijman y L. C. Rietveld, “Adsorption of triclosan, trichlorophenol and phenol by high-silica zeolites: Adsorption efficiencies and mechanisms”, Sep. Purif. Technol., vol. 235, 2019, doi: 10.1016/j.seppur.2019.116152.

C.-C. Wang, L.-C. Juang, C.-K. Lee, T.-C. Hsu, J.-F. Lee y H.-P. Chao, “Effects of exchanged surfactant cations on the pore structure and adsorption characteristics of montmorillonite”, J. Colloid Interface Sci., vol. 280, no. 1, pp. 27-35, 2004, doi: 10.1016/j.jcis.2004.07.009.

N. Liu et al., “Sorption of tetracycline on organo-montmorillonites”, J. Hazard. Mater., vols. 225-226, pp. 28-35, jul. 2012, doi: 10.1016/j.jhazmat.2012.04.060.

D. J. De Ridder, J. Q. J. C. Verberk, S. G. J. Heijman, G. L. Amy y J. C. Van Dijk, “Zeolites for nitrosamine and pharmaceutical removal from demineralised and surface water: Mechanisms and efficacy”, Sep. Purif. Technol., vol. 89, pp. 71-77, 2012, doi: 10.1016/j.seppur.2012.01.025.

S. Mella, C. Zemelman, H. Bello, M. Domínguez, G. González y R. Zemelman, “Propiedades microbiológicas, clasificación y relación estructura-actividad de cefalosporinas e importancia de las cefalosporinas de cuarta generación”, Rev Chil Infect, vol. 18, no. 1, pp. 7-19, 2001, doi: 10.4067/S0716-10182001000100002.

V. G. Alekseev, “Acid–base properties of penicillins and cephalosporins (a review)”, Pharm. Chem. J., vol. 44, no. 1, pp. 14-24, 2010, doi: 10.1007/s11094-010-0389-6.

S. Dancer, “The problem with cephalosporins”, J Antimicrob Chemother, vol. 48, no. 4, pp. 463-478, 2001, doi: 10.1093/jac/48.4.463.

P. Ray, K. F. Knowlton, C. Shang y K. Xia, “Development and Validation of a UPLC-MS/MS Method to Monitor Cephapirin Excretion in Dairy Cows following Intramammary Infusion”, PLoS One, vol. 9, no. 11, 2014, doi: 10.1371/journal.pone.0112343.

S. Manzetti y R. Ghisi, “The environmental release and fate of antibiotics”, Mar. Pollut. Bull., vol. 79, nos. 1-2, pp. 7-15, 2014, doi: 10.1016/j.marpolbul.2014.01.005.

E. López, D. Soy, M. T. Miana, C. Codina y J. Ribas, “Algunas reflexiones acerca de la administración de antibióticos betalactámicos en infusión continua”, Enferm. Infecc. Microbiol. Clin., vol. 24, no. 7, pp. 445-452, 2006, doi: 10.1157/13091783.

A. R. Ribeiro, B. Sures y T. C. Schmidt, “Cephalosporin antibiotics in the aquatic environment: A critical review of occurrence, fate, ecotoxicity and removal technologies”, Environ. Pollut., vol. 241, pp. 1153-1166, 2018, doi: 10.1016/j.envpol.2018.06.040.

M. R. Samarghandi, T. J. Al-Musawi, A. Mohseni-Bandpi y M. Zarrabi, “Adsorption of cephalexin from aqueous solution using natural zeolite and zeolite coated with manganese oxide nanoparticles”, J. Mol. Liq., vol. 211, pp. 431-441, 2015, doi: 10.1016/j.molliq.2015.06.067.

D. A. C. Coledam et al., “Electrochemical mineralization of cephalexin using a conductive diamond anode: A mechanistic and toxicity investigation”, Chemosphere, vol. 168, pp. 638-647, feb. 2017, doi: 10.1016/j.chemosphere.2016.11.013.

N. Ajoudanian y A. Nezamzadeh-Ejhieh, “Enhanced photocatalytic activity of nickel oxide supported on clinoptilolite nanoparticles for the photodegradation of aqueous cephalexin”, Mater. Sci. Semicond. Process., vol. 36, pp. 162-169, ag. 2015, doi: 10.1016/j.mssp.2015.03.042.

X. He, S. P. Mezyk, I. Michael, D. Fatta-Kassinos y D. D. Dionysiou, “Degradation kinetics and mechanism of β-lactam antibiotics by the activation of H2O2 and Na2S2O8 under UV-254 nm irradiation”, J. Hazard. Mater., vol. 279, pp. 375-383, ag. 2014, doi: 10.1016/j.jhazmat.2014.07.008.

M. Jiang, L. Wang y R. Ji, “Biotic and abiotic degradation of four cephalosporin antibiotics in a lake surface water and sediment”, Chemosphere, vol. 80, no. 11, pp. 1399-1405, sept. 2010, doi: 10.1016/j.chemosphere.2010.05.048.

A. Fakhri y S. Adami, “Adsorption and thermodynamic study of Cephalosporins antibiotics from aqueous solution onto MgO nanoparticles”, J. Taiwan Inst. Chem. Eng., vol. 45, no. 3, pp. 1001-1006, may. 2014, doi: 10.1016/j.jtice.2013.09.028.

L. Li, D. Wei, G. Wei y Y. Du, “Transformation of cefazolin during chlorination process: products, mechanism and genotoxicity assessment”, J. Hazard. Mater., vol. 262, pp. 48-54, nov. 2013, doi: 10.1016/j.jhazmat.2013.08.029.

J. W. Peterson, T. A. O’Meara, M. D. Seymour, W. Wang y B. Gu, “Sorption mechanisms of cephapirin, a veterinary antibiotic, onto quartz and feldspar minerals as detected by Raman spectroscopy”, Environ. Pollut., vol. 157, no. 6, pp. 1849-1856, 2009, doi: 10.1016/j.envpol.2009.01.017.

A. Mohseni-Bandpi, T. J. Al-Musawi, E. Ghahramani, M. Zarrabi, S. Mohebi y S. A. Vahed, “Improvement of zeolite adsorption capacity for cephalexin by coating with magnetic Fe3O4 nanoparticles”, J. Mol. Liq., vol. 218, pp. 615-624, 2016, doi: 10.1016/j.molliq.2016.02.092.

T. Farías, A. R. Ruiz-Salvador y A. Rivera, “Interaction studies between drugs and a purified natural clinoptilolite”, Microporous Mesoporous Mater., vol. 61, nos. 1-3, pp. 117-125, 2003, doi: 10.1016/S1387-1811(03)00391-3.

A. Nezamzadeh-Ejhieh y S. Tavakoli-Ghinani, “Effect of a nano-sized natural clinoptilolite modified by the hexadecyltrimethyl ammonium surfactant on cephalexin drug delivery”, Comptes Rendus Chim., vol. 17, no. 1, pp. 49-61, 2014, doi: 10.1016/j.crci.2013.07.009.

H. Duan, X. Hu y Z. Sun, “Magnetic zeolite imidazole framework material-8 as an effective and recyclable adsorbent for removal of ceftazidime from aqueous solution”, J. Hazard. Mater., vol. 384, 2020, doi: 10.1016/j.jhazmat.2019.121406.

J. M. Martinez-Blanes, “Obtención de zeolitas utilizando líquidos iónicos como agentes directores de estructura”, tesis de doctorado. Depto. de Química Inorgánica, Universidad de Sevilla, Sevilla, España, 2015.

R. S. Al-Khalisy, A. M. A. Al-Haidary y A. H. Al-Dujaili, “Aqueous Phase Adsorption of Cephalexin onto Bentonite and Activated Carbon”, Sep. Sci. Technol., vol. 45, no. 9, pp. 1286-1294, may. 2010, doi: 10.1080/01496391003689017.

Y. Su, H. Si, J. Chen y G. Wu, “Promoting the sustainable development of the recycling market of construction and demolition waste: A stakeholder game perspective”, J. Clean. Prod., vol. 277, 2020, doi: 10.1016/j.jclepro.2020.122281.

R. Islam, T. H. Nazifa, A. Yuniarto, A. S. M. Shanawaz Uddin, S. Salmiati y S. Shahid, “An empirical study of construction and demolition waste generation and implication of recycling”, Waste Manag., vol. 95, pp. 10-21, 2019, doi: 10.1016/j.wasman.2019.05.049.

N. Zhang et al., “Recent investigations and progress in environmental remediation by using covalent organic framework-based adsorption method: A review”, J. Clean. Prod., vol. 277, 2020, doi: 10.1016/j.jclepro.2020.123360.

Publicado

2021-05-15

Cómo citar

Rivera Pérez, Z. M., Torres Pérez, J., & Reyes López, S. Y. (2021). Remoción de cefalosporinas con aluminosilicatos. Cultura Científica Y Tecnológica, 18(1), 1–16. https://doi.org/10.20983/culcyt.2021.1.3.3

Número

Sección

Artículos de revisión