Intelligent Surveillance Systems: A Review

Autores/as

DOI:

https://doi.org/10.20983/culcyt.2020.2.3.1

Palabras clave:

Smart surveillance, deep learning, security

Resumen

Security refers to the perceptions about an environment protection, it means without worry of suffer harm. This research offers a literature review about security subject, focused on autonomous surveillance, gathering in a single document the technical novelties about surveillance systems, their applications, and central components. During this research , we observe that deep learning its being applied for surveillance purpose, opening new research horizons, in an area which does not have been significant changes during about ten years, and we also found that new vast datasets are being produced to solve issues regarding security. We have also seen that, in terms of security, deep learning is highly viable to solve problems that have been implicit in security systems for a long time, this being able to turn deep learning into a new breakthrough with respect to systems programmed only by traditional vision algorithms, opening the possibility of becoming a mandatory accessory for security of systems. This research has been limited only on civil area surveillance systems, also we only use scientific articles for this, avoiding commercial technologies.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Jose Manuel Mejia Muñoz, Universidad Autónoma de Ciudad Juárez

Profesor

Instituto de Ingeniería y Tecnología

Leticia Ortega Máynez, Universidad Autónoma de Ciudad Juárez

Profesora investigadora

Instituto de Ingeniería y Tecnología

Citas

H. Lasi, P. Fettke, H. G. Kemper. T. Feld and M. Hoffmann, “Industry 4.0,” Bus. Inf. Syst. Eng., vol. 6, no. 4, pp. 239-242, Jun. 19, 2014. DOI: s12599-014-0334-4.

S. Vaidya, P. Ambad and S. Bhosle, “Industry 4.0 – A Glimpse,” Procedia Manufacturing, vol. 20, pp. 233-238, 2018. DOI: j.promfg.2018.02.034.

T. Pereira, L. Barreto and A. Amaral, “Network and information security challenges within Industry 4.0 paradigm,” Procedia manufacturing, vol. 13, pp. 1253-1260, 2017. DOI: j.promfg.2017.09.047.

H. Flatt, S. Schriegel, J. Jasperneite, H. Trsek and H. Adamczyk, “Analysis of the Cyber-Security of industry 4.0 technologies based on RAMI 4.0 and identification of requirements,” 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA), Berlin, 2016, pp. 1-4, DOI: 10.1109/ETFA.2016.7733634.

S. R. Chhetri, N. Rashid, S. Faezi and M. A. Al Faruque, “Security trends and advances in manufacturing systems in the era of industry 4.0,” 2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Irvine, CA, 2017, pp. 1039-1046, DOI: 10.1109/ICCAD.2017.8203896.

Weiming Hu, Tieniu Tan, Liang Wang and S. Maybank, “A survey on visual surveillance of object motion and behaviors,” in IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 34, no. 3, pp. 334-352, Aug. 2004, DOI: 10.1109/TSMCC.2004.829274.

M. Andrejevic, “Automating surveillance,” Surveillance & Society, vol. 17, no 1/2, pp. 7-13, 2019, DOI: 10.24908/ss.v17i1/2.12930.

V. J. González-Ramallo and A. Segado-Soriano, “Veinticinco años de hospitalización a domicilio en España,” Med. Clín., vol. 126, no. 9, pp. 332-333, 2006, DOI: 10.1157/13085746.

T. M. Llorente, P. S. Gallardo, C. D. R. Fernández and R. M. Alba, “Repercusiones en el cuidador principal del niño hospitalizado a domicilio en cuidados paliativos pediátricos,” Medicina Paliativa, vol. 23, no. 2, pp. 79-92, 2016, DOI: 10.1016/j.medipa.2013.12.004.

Z. Zhang, S. Ishida, S. Tagashira and A. Fukuda, “Danger-pose detection system using commodity Wi-Fi for bathroom monitoring,” Sensors, vol. 19, no 4, pp. 884, 2019, DOI: 10.3390/s19040884.

A. Weintraub, D. Gregory, A. R. Patel, D. Levine, D. Venesy, K. Perry and M. A. Konstam, “A multicenter randomized controlled evaluation of automated home monitoring and telephonic disease management in patients recently hospitalized for congestive heart failure: the SPAN-CHF II trial,” J. Card. Fail., vol. 16, no. 4, pp. 285-292, 2010. DOI: 10.1016/j.cardfail.2009.12.012.

M. H. Kuo, S- L. Wang and W. T. Chen, “Using information and mobile technology improved elderly home care services,” Health Policy and Technology, vol. 5, no 2, p. 131-142, 2016, DOI: 10.1016/j.hlpt.2016.02.004.

I. Sharafaldin, A. H. Lashkari and A. A. Ghorbani, “Toward generating a new intrusion detection dataset and intrusion traffic characterization,” 4th International Conference on Information Systems Security and Privacy - Volume I: ICISSP, Funchal, Madeira, Portugal, 2018, pp. 108-116, DOI: 10.5220/0006639801080116.

R. A. Raza Ashfaq, X-Z. Wang, J. Zhexue Huang, H. Abbas and Y-L. He, “Fuzziness based semi-supervised learning approach for intrusion detection system,” Information Sciences, vol. 378, pp. 484-497, February 2017, DOI: 10.1016/j.ins.2016.04.019.

S. Radhakrishnan and R. A. Ramanathan, “A Support Vector Machine with Gabor Features for Animal Intrusion Detection in Agriculture Fields,” Procedia computer science, vol. 143, p. 493-501, 2018, DOI: 10.1016/j.procs.2018.10.422.

R. Nikhil, B. S. Anisha and R. Kumar P., “Real-Time Monitoring of Agricultural Land with Crop Prediction and Animal Intrusion Prevention using Internet of Things and Machine Learning at Edge,” 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, 2020, pp. 1-6, DOI: 10.1109/CONECCT50063.2020.9198508.

N. Manohar, Y. H. Sharath Kumar and G. Hemantha Kumar, “An Approach for the Development of Animal Tracking System,” International Journal of Computer Vision and Image Processing (IJCVIP), vol. 8, no 1, p. 15-31, 2018, DOI: 10.4018/IJCVIP.2018010102.

Z. Sun, S. Tang, H. Huang, Z. Zhu, H. Guo, Y. Sun and L. Huang, “SOS: Real-time and accurate physical assault detection using smartphone,” Peer-to-Peer Netw. Appl., vol. 10, no 2, pp. 395-410, 2017. DOI: 10.1007/s12083-016-0428-5.

Ch. Gayathri Harshitha, M. Kameswara Rao and P. Neelesh Kumar, “A Novel Mechanism for Host-Based Intrusion Detection System,” First International Conference on Sustainable Technologies for Computational Intelligence (ICTSCI 2019), Jaipur, Rajasthan, India, 2019, pp. 527-536, DOI: 10.1007/978-981-15-0029-9_42.

C. J. Wilkinson, “Airport Staff Access Control: Biometrics at Last?,” 2018 International Carnahan Conference on Security Technology (ICCST), Montreal, QC, 2018, pp. 1-8, DOI: 10.1109/CCST.2018.8585592.

B. Bowling and S. Westenra, “‘A really hostile environment’: Adiaphorization, global policing and the crimmigration control system,” Theoretical Criminology, vol. 24, no. 2, pp. 163-183, 2018, DOI: 10.1177/1362480618774034.

A. Antoniou and P. Angelov, “A general purpose intelligent surveillance system for mobile devices using Deep Learning,” 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, 2016, pp. 2879-2886, DOI: 10.1109/IJCNN.2016.7727563.

T. Zhao, Y. Yan, J. Peng, Z. Mi and X. Fu, “Guiding intelligent surveillance system by learning-by-synthesis gaze estimation,” Pattern Recognit. Lett., 125, pp. 556-562, 2018.

R. Dautov, S. Distefano, G. Merlino, D. Bruneo, F. Longo and A. Puliafito, “Towards a global intelligent surveillance system,” 2017: Proceedings of the 11th International Conference on Distributed Smart Cameras (ICDSC), Stanford CA USA, September 2017, pp. 119-124, DOI: 10.1145/3131885.3131918.

N. Kumar, J. Lee and J. J. P. C. Rodrigues, “Intelligent Mobile Video Surveillance System as a Bayesian Coalition Game in Vehicular Sensor Networks: Learning Automata Approach,” in IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 3, pp. 1148-1161, June 2015, DOI: 10.1109/TITS.2014.2354372.

R. A. Shahad, L. G. Bein, M. H. M. Saad and A. Hussain, “Complex event detection in an intelligent surveillance system using CAISER platform,” 2016 International Conference on Advances in Electrical, Electronic and Systems Engineering (ICAEES), Putrajaya, 2016, pp. 129-133, DOI: 10.1109/ICAEES.2016.7888023.

M. Al-Nawashi, O. M. Al-Hazaimeh and M. Saraee, “A novel framework for intelligent surveillance system based on abnormal human activity detection in academic environments,” Neural Comput. & Applic., 28, pp. 565-572, 2017, DOI: 10.1007/s00521-016-2363-z

L. Wei Yang and C. Yen Su, “Low-Cost CNN Design for Intelligent Surveillance System,” 2018 International Conference on System Science and Engineering (ICSSE), New Taipei, 2018, pp. 1-4, DOI: 10.1109/ICSSE.2018.8520133

Y. Tang, C. Zhang, R. Gu, P. Li and B. Yang, “Vehicle detection and recognition for intelligent traffic surveillance system,” Multimedia tools and applications, vol. 76, no. 4, pp. 5817-5832, 2017, DOI: 10.1007/s11042-015-2520-x.

W. Kurniawan, S. Ibrahim and M. Sulistyo, “People detection and tracking methods for intelligent surveillance system,” AIP Conference Proceedings, vol. 2217, no. 1, p. 030110, Apr. 2020, DOI: 10.1063/5.0001022.

J. Han, M. Feng and P. H. N. de With, “A real-time video surveillance system with human occlusion handling using nonlinear regression,” 2008 IEEE International Conference on Multimedia and Expo, Hannover, 2008, pp. 305-308, DOI: 10.1109/ICME.2008.4607432.

C. R. Wren, A. Azarbayejani, T. Darrell and A. P. Pentland, “Pfinder: real-time tracking of the human body,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 780-785, July 1997, DOI: 10.1109/34.598236.

K. E. Ko and K. B. Sim, “Deep convolutional framework for abnormal behavior detection in a smart surveillance system,” Engineering Applications of Artificial Intelligence, vol. 67, pp. 226-234, 2018, DOI: 10.1016/j.engappai.2017.10.001.

R. Girshick, J. Donahue, T. Darrell and J. Malik, “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation,” 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, 2014, pp. 580-587, DOI: 10.1109/CVPR.2014.81.

S. Ren, K. He, R. Girshick and J. Sun, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, arXiv:1506.01497, Jan. 2016. Available: https://aps.arxiv.org/abs/1506.01497v2.

K. He, G. Gkioxari, P. Dollár and R. Girshick, “Mask R-CNN,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 2, pp. 386-397, 1 Feb. 2020, DOI: 10.1109/TPAMI.2018.2844175.

N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 2005, pp. 886-893 vol. 1, DOI: 10.1109/CVPR.2005.177.

Y. Guo, Y. Liu, T. Georgiou and M. S. Lew, “A review of semantic segmentation using deep neural networks,” Int. J. Multimed. Info. Retr., 2018, vol. 7, no 2, p. 87-93, DOI: 10.1007/s13735-017-0141-z.

W. Lao, J. Han and P. H. n. De With, “Automatic video-based human motion analyzer for consumer surveillance system,” in IEEE Transactions on Consumer Electronics, vol. 55, no. 2, pp. 591-598, May 2009, DOI: 10.1109/TCE.2009.5174427.

K. Rajaei, Y. Mohsenzadeh, R. Ebrahimpour, S. M. Khaligh-Razavi, “Beyond core object recognition: Recurrent processes account for object recognition under occlusion,” PLoS Comput. Biol., vol. 15, no 5, p. e1007001, 2019, DOI: 10.1371/journal.pcbi.1007001.

P. Peursum, H. H. Bui, S. Venkatesh and Geoff West, “Robust recognition and segmentation of human actions using HMMs with missing observations,” EURASIP J. Adv. Signal Process, no. 870416, 2005, DOI: 10.1155/ASP.2005.2110.

S. Wei, V. Ramakrishna, T. Kanade and Y. Sheikh, “Convolutional Pose Machines,” 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 2016, pp. 4724-4732, DOI: 10.1109/CVPR.2016.511.

J. Liu, Y. Gu and S. Kamijo, “Customer behavior classification using surveillance camera for marketing,” Multimed. Tools Appl., vol. 76, no 5, p. 6595-6622, 2017, DOI: 10.1007/s11042-016-3342-1.

M. A. El-Sayed and K. Hamed, “Study of Similarity Measures with Linear Discriminant Analysis for Face Recognition,” Journal of Software Engineering and Applications, vol. 8, no. 9, pp. 478–488, 2015, DOI: 10.4236/jsea.2015.89046.

Y. Taigman, M. Yang, M. Ranzato and L. Wolf, “DeepFace: Closing the Gap to Human-Level Performance in Face Verification,” 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, 2014, pp. 1701-1708, DOI: 10.1109/CVPR.2014.220.

“What is COCO?,” 2020. Accessed on: 2020. [Online].Available: http://cocodataset.org.

F. Cakir, K. He, X. Xia, B. Kulis and S. Sclaroff, “Deep Metric Learning to Rank,” 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019, pp. 1861-1870, DOI: 10.1109/CVPR.2019.00196.

D. Puri, “COCO Dataset Stuff Segmentation Challenge,” 2019 5th International Conference On Computing, Communication, Control And Automation (ICCUBEA), Pune, India, 2019, pp. 1-5, DOI: 10.1109/ICCUBEA47591.2019.9129255.

J. Hui, mAP (mean Average Precision) for Object Detection, Johathan Hui web page, Mar. 6, 2018. Accessed on: April 3, 2019. [Online]. Available: https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173.

Y. Yang and D. Ramanan, “Articulated Human Detection with Flexible Mixtures of Parts,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 12, pp. 2878-2890, Dec. 2013, DOI: 10.1109/TPAMI.2012.261.

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn and Andrew Zisserman, “The PASCAL Visual Object Classes (VOC) Challenge,” Int. J. Comput. Vis., vol. 88, no. 2, pp. 303-338, 2010, DOI: 10.1007/s11263-009-0275-4.

H. Zhu, R. Vial and S. Lu, “TORNADO: A Spatio-Temporal Convolutional Regression Network for Video Action Proposal,” 2017 IEEE International Conference on Computer Vision (ICCV), Venice, 2017, pp. 5814-5822, DOI: 10.1109/ICCV.2017.619.

Publicado

2020-05-01

Cómo citar

Mejia Muñoz, J. M., Mariscal Torres, A., & Ortega Máynez, L. (2020). Intelligent Surveillance Systems: A Review. Cultura Científica Y Tecnológica, 17(2). https://doi.org/10.20983/culcyt.2020.2.3.1

Número

Sección

Artículos de revisión