Preparación de carbón activado a partir de residuos de Zea mays para eliminar tartrazina

Jonatan Torres-Pérez, Perla Nataly López-Téllez-Girón, Alba Yadira Corral-Avitia, Katya Aimée Carrasco-Urrutia, Marcos Delgado-Ríos



DOI: http://dx.doi.org/10.20983/culcyt.2020.1.2.1

Resumen


Actualmente, algunas investigaciones pretenden usar materiales obtenidos de residuos agrícolas para fabricar carbón activado que remueva los colorantes orgánicos en el tratamiento de agua. Son pocos los trabajos que han empleado el olote del maíz como precursor para dicho fin. El objetivo de la presente investigación fue realizar un proceso de carbonización y activación de olote de maíz crudo y procesado (cocido) por separado para obtener cuatro diferentes materiales adsorbentes. Se realizaron pruebas cinéticas de sorción para evaluar la capacidad de remoción del colorante tartrazina de medio acuoso. Los resultados experimentales obtenidos demostraron que los materiales preparados a partir de olote de maíz son capaces de remover el colorante tartrazina de medio acuoso, presentando una superficie alcalina y heterogénea. El material obtenido tiene una capacidad de sorción importante, comparada con los resultados de investigaciones realizadas con otros residuos agrícolas que han sido activados químicamente, y además su costo económico y ambiental es mucho menor.


Palabras clave


Material adsorbente; olote de maíz; sorción; colorante azóico

Texto completo:

PDF (Español) HTML

Referencias


M. Jia, F. Wang, Y. Bian, X. Jin, Y. Song, F. O. Kengara, R. Xu y X. Jiang, “Effects of pH and metal ions on oxytetracycline sorption to maize-straw-derived biochar”, Bioresource Technology, vol. 136, pp. 87-93, my. 2013. DOI: 10.1016/j.biortech.2013.02.098

M. A. M. Salleh, D. K. Mahmoud, W. A. W. A. Karim y A. Idris, “Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review”, Desalination, vol. 280, nos. 1-3, pp. 1-13, oct. 2011. DOI: 10.1016/j.desal.2011.07.019

A. Pal, Y. He, M. Jekel, M. Reinhard y K. Y. H. Gin, “Emerging contaminants of public health significance as water quality indicator compounds in the urban water cycle”, Environment International, vol. 71, pp. 46-62, oct. 2014. DOI: 10.1016/j.envint.2014.05.025

J. Torres-Pérez, L. A. Soria-Serna, M. Solache-Ríos y G. McKay, “One Step carbonization/activation process for carbonaceous material preparation from pecan shells for tartrazine removal and regeneration after saturation”, Adsorption Science & Technology, vol. 33, no. 10, pp. 1-22, dic. 2015. DOI: 10.1260/0263-6174.33.10.895

V. S. Mane, I. D. Mall y V. C. Srivastava, “Use of bagasse fly ash as an adsorbent for the removal of brilliant green dye from aqueous solution”, Dyes and Pigments, vol. 73, no. 3, pp. 269-278, 2007. DOI: 10.1016/j.dyepig.2005.12.006

J. Torres-Pérez, M. Solache-Ríos y A. Colín-Cruz, “Sorption and desorption of dye remazol yellow onto a Mexican surfactant-modified clinoptilolite-rich tuff and a carbonaceous material from pyrolysis of sewage sludge”, Water, Air, and Soil Pollution, vol. 187, nos. 1-4, en. 2008. DOI: 10.1007/s11270-007-9518-6

L. Monser y N. Adhoum, “Tartrazine modified activated carbon for the removal of Pb(II), Cd(II) and Cr(III)”, Journal of Hazardous Materials, vol. 161, no. 1, pp. 263-269, en. 2009. DOI: 10.1016/j.jhazmat.2008.03.120

A. Mittal, J. Mittal y L. Kurup, “Adsorption isotherms, kinetics and column operations for the removal of hazardous dye, Tartrazine from aqueous solutions using waste materials-Bottom Ash and De-Oiled Soya, as adsorbents”, Journal of Hazardous Materials, vol. 136, no. 3, pp. 567-578, ag. 2006.

A. Mittal, L. Kurup y J. Mittal, “Freundlich and Langmuir adsorption isotherms and kinetics for the removal of Tartrazine from aqueous solutions using hen feathers”, Journal of Hazardous Materials, vol. 146, nos. 1-2, pp. 243-248, jul. 2007. DOI: 10.1016/j.jhazmat.2006.12.012

A. Mittal, L. Krishnan y V. K. Gupta, “Removal and recovery of malachite green from wastewater using an agricultural waste material, de-oiled soya”, Separation and Purification Technology, vol. 43, no. 2, pp. 125-133, my. 2005. DOI: 10.1016/j.seppur.2004.10.010

M. Wawrzkiewicz y Z. Hubicki, “Removal of tartrazine from aqueous solutions by strongly basic polystyrene anion exchange resins”, Journal of Hazardous Materials, vol. 164, nos. 2-3, pp. 502-509, my. 2009. DOI: 10.1016/j.jhazmat.2008.08.021

M. Ahmaruzzaman, “Adsorption of phenolic compounds on low-cost adsorbents: A review”, Advances in Colloid and Interface Science, vol. 143, nos. 1-2, pp. 48-67, nov. 2008. DOI: 10.1016/j.cis.2008.07.002

N. Das, R. Vimala y P. Karthika, “Biosorption of heavy metals–An overview”, Indian Journal of Biotechnology, vol. 7, no. 2, pp. 159-169, abr. 2008.

G. O. El-Sayed, M. M. Yehia y A. A. Asaad, “Assessment of activated carbon prepared from corncob by chemical activation with phosphoric acid”, Water Resources and Industry, vol. 7-8, pp. 66-75, sept. 2014. DOI: 10.1016/j.wri.2014.10.001

W. Buah, “Conversion of Corn Cobs Waste into Activated Carbons for Adsorption of Heavy Metals from Minerals Processing Wastewater”, International Journal of Environmental Protection and Policy, vol. 4, no. 4, pp. 98-103, jul. 2016. Disponible en: http://article.sciencepublishinggroup.com/pdf/10.11648.j.ijepp.20160404.11.pdf

P. C. C. Faria, J. J. M. Orfao y M. F. R. Pereira, “Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries”, Water Research, vol. 38, no. 8, pp. 2043-2052, abr. 2004. DOI: 10.1016/j.watres.2004.01.034

X. Han, Y. He, H. Zhao y D. Wang, “Optimization of preparation conditions of activated carbon from the residue of desilicated rice husk using response surface methodology”, Korean Journal of Chemical Engineering, vol. 31, no. 10, pp. 1810-1817, oct. 2014. DOI: 10.1007/s11814-014-0103-6

ASTM International, “Standard Test Method for Total Ash Content of Activated Carbon. Active Standard ASTM D2866”, West Conshohocken, PA: ASTM International, 2018.

J. P. Chen, S. Wu y K. H. Chong, “Surface modification of a granular activated carbon by citric acid for enhancement of copper adsorption”, Carbon, vol. 41, no. 10, pp. 1979-1986, 2003. DOI: 10.1016/S0008-6223(03)00197-0

M. Hejazifar y S. Azizian, “Adsorption of Cationic and Anionic Dyes onto the Activated Carbon Prepared from Grapevine Rhytidome”, Journal of Dispersion Science and Technology, vol. 33, no. 6, pp. 846-853, 2012. DOI: 10.1080/01932691.2011.579861

M. Ghaedi, J. Tashkhourian, A. A. Pebdani, B. Sadeghian y F. N. Ana, “Equilibrium, kinetic and thermodynamic study of removal of reactive orange 12 on platinum nanoparticle loaded on activated carbon as novel adsorbent”, Korean Journal of Chemical Engineering, vol. 28, no. 12, pp. 2255-2261, dic. 2011. DOI: 10.1007/s11814-011-0142-1

J. Torres-Pérez, M. Solache-Ríos y M. T. Olguín, “Sorption of azo dyes onto a Mexican surfactant-modified clinoptilolite-rich tuff”, Separation Science and Technology, vol. 42, no. 2, pp. 299-318, febr. 2007. DOI: 10.1080/01496390601069879

V. Vadivelan y K. Vasanth Kumar, “Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk”, Journal of Colloid and Interface Science, vol. 286, no. 1, pp. 90-100, jun. 2005. DOI: 10.1016/j.jcis.2005.01.007

J. Torres-Pérez, L. A. Soria-Serna, M. Solache-Ríos y G. McKay, “One Step carbonization/activation process for carbonaceous material preparation from pecan shells for tartrazine removal and regeneration after saturation”, Adsorption Science & Technology, vol. 33, no. 10, dic. 2015. DOI: 10.1260/0263-6174.33.10.895

Y. S. Ho y G. M. Fellow, “Kinetic models for the sorption of dye from aqueous solution by wood”, Process Safety and Environmental Protection, vol. 76, no. 2, pp. 183-191, my. 1998. DOI: 10.1205/095758298529326

Y. S. Ho y G. McKay, “The kinetics of sorption of divalent metal ions onto sphagnum moss peat”, Water Research, vol. 34, no. 3, pp. 735–742, febr. 2000. DOI: 10.1016/S0043-1354(99)00232-8

A. W. M. Ip, J. P. Barford y G. McKay, “A comparative study on the kinetics and mechanisms of removal of Reactive Black 5 by adsorption onto activated carbons and bone char”, Chemical Engineering Journal, vol. 157, nos. 2-3, pp. 434-442, mar. 2010. DOI: 10.1016/j.cej.2009.12.003

W. S. Wan Ngah, N. F. M. Ariff y M. A. K. M. Hanafiah, “Preparation, characterization, and environmental application of crosslinked chitosan-coated bentonite for tartrazine adsorption from aqueous solutions”, Water, Air, and Soil Pollution, vol. 206, nos. 1-4, pp. 225-236, 2010. DOI: 10.1007/s11270-009-0098-5

S. Fauzia, F. Furqani, R. Zein y E. Munaf, “Adsorption and reaction kinetics of tatrazine by using Annona muricata L seeds”, Journal of Chemical and Pharmaceutical Research, vol. 7, no. 1, pp. 573-582, 2015. Disponible en: http://www.jocpr.com/articles/adsorption-and-reaction-kinetics-of-tatrazine-by-using-annona-muricata-l-seeds.pdf

M. A. Ahmad, N. Ahmad y O. S. Bello, “Adsorptive removal of malachite green dye using Durian seed-based activated carbon”, Water, Air, & Soil Pollution, vol. 225, no. 8, jul. 2014. DOI: 10.1007/s11270-014-2057-z

Y. S. Ho y G. Mckay, “Pseudo-second order model for sorption processes”, Process Biochemistry, vol. 34, no. 5, pp. 451-465, jul. 1999. DOI: 10.1016/S0032-9592(98)00112-5

Y. S. Ho y G. McKay, “Kinetic model for lead(II) sorption on to peat”, Adsorption Science & Technology, vol. 16, no. 4, pp. 243-255, abr. 1998. DOI: 10.1177/026361749801600401

S. Dawood, T. K. Sen y C. Phan, “Synthesis and characterisation of novel-activated carbon from waste biomass pine cone and its application in the removal of congo red dye from aqueous solution by adsorption”, Water, Air, & Soil Pollution, vol. 225, no. 1, dic. 2014. DOI: 10.1007/s11270-013-1818-4

T. Robinson, B. Chandran y P. Nigam, “Removal of dyes from an artificial textile dye effluent by two agricultural waste residues, corncob and barley husk”, Environment International, vol. 28, nos. 1-2, pp. 29-33, abr. 2002. DOI: 10.1016/S0160-4120(01)00131-3

B. Heibati, S. Rodriguez-Couto, A. Amrane, M. Rafatullah, A. Hawari y M. A. Al-Ghouti, “Uptake of Reactive Black 5 by pumice and walnut activated carbon: Chemistry and adsorption mechanisms”, Journal of Industrial and Engineering Chemistry, vol. 20, no. 5, pp. 2939-2947, set. 2014. DOI: 10.1016/j.jiec.2013.10.063

T. K. Sen, S. Afroze y H. M. Ang, “Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pine cone biomass of Pinus radiata”, Water, Air, & Soil Pollution, vol. 218, nos. 1-4, pp. 499-515, oct. 2011. DOI: 10.1007/s11270-010-0663-y

M. O. Dawodu y K. G. Akpomie, “Evaluating the potential of a Nigerian soil as an adsorbent for tartrazine dye: Isotherm, kinetic and thermodynamic studies”, Alexandria Engineering Journal, vol. 55, no. 4, pp. 3211-3218, dic. 2016. DOI: 10.1016/j.aej.2016.08.008

G. L. Dotto, M. L. G. Vieira y L. A. A. Pinto, “Kinetics and mechanism of tartrazine adsorption onto chitin and chitosan”, Industrial & Engineering Chemistry Research, vol. 51, no. 19, pp. 6862-6868, my. 2012. DOI: 10.1021/ie2030757

S. Banerjee y M. C. Chattopadhyaya, “Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product”, Arabian Journal of Chemistry, vol. 10, pp. S1629-S1638, abr. 2017. DOI: 10.1016/j.arabjc.2013.06.005


Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2020 Jonatan Torres Pérez, Perla Nataly López Téllez-Girón, Alba Yadira Corral Avitia, Katya Aimée Carrasco Urrutia, Marcos Delgado Ríos

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.

Responsable de la última actualización de este número: Raúl Alfredo Meza González. Fecha de la última modificación, 14 de abril de 2020.

Las opiniones expresadas por los autores no necesariamente reflejan la postura del editor de la publicación. Los contenidos e imágenes de la publicación estan sujetos a una licencia CC 4.0 internacional BY NC. 

 Licencia de Creative Commons