Procesos de Oxidación Avanzada y Electroquímicos para Remover Edulcorantes Artificiales del Agua

Autores/as

DOI:

https://doi.org/10.20983/culcyt.2020.1.3.1

Palabras clave:

Edulcorante artificial, POA, electrooxidación, luz UV, radical hidroxilo.

Resumen

El objetivo de la presente revisión es presentar investigaciones recientes sobre la remoción de algunos edulcorantes —reconocidos como contaminantes emergentes— del agua o matrices acuosas, utilizando los Procesos de Oxidación Avanzada (POA). En un intento por evadir el consumo de endulzantes calóricos que han provocado problemas de salud, los seres humanos consumen edulcorantes artificiales que prácticamente no se metabolizan después de ingerirse, de esa forma se integran al agua residual e inclusive resisten la degradación total en las plantas de tratamiento de agua convencionales. Por tanto, en bases de datos se revisaron electrooxidación, electro-Fenton, foto-Fenton, fotocatálisis heterogénea, oxidación por ultravioleta/peróxido y oxidación por ultravioleta/ozono, catalogados como POA. Estos procesos son una alternativa debido a que generan radicales hidroxilo ·OH, caracterizados por su alto poder oxidante. La electrooxidación se puede declarar como la más conveniente para la degradación de edulcorantes artificiales como el acesulfamo de potasio, por ejemplo, debido a la menor cantidad de componentes requeridos para su ejecución y, al mismo tiempo, se logra una eficiencia de remoción similar, o incluso mayor, comparada con otros POA. Igualmente, se documentaron los resultados y méritos relativos a la aplicación de estos al agua o matrices acuosas, así como las oportunidades para investigación futura.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

M. Carocho, P. Morales y I. C. F. R. Ferreira, “Sweeteners as food additives in the XXI century: A review of what is known, and what is to come”, Food Chem. Toxicol., vol. 107A, pp. 302-317, Septiembre 2017. https://doi.org/10.1016/j.fct.2017.06.046

S. Marie, “Sweeteners” en Food Additive User's Handbook, 1st. ed. New York: Springer, 1995, pp. 47-74. https://doi.org/10.1007/978-1-4757-5247-2

A. Das y R. Chakraborty, “An Introduction to Sweeteners” en Sweeteners: Pharmacology, Biotechnology, and Applications, 1st. ed. Cham, Switzerland: Springer, 2018, pp. 1-13. https://doi.org/10.1007/978-3-319-27027-2

S. Chattopadhyay, U. Raychaudhuri y R. Chakraborty, “Artificial sweeteners - a review”, J Food Sci Technol, vol. 51, no. 4, pp. 611-621, Abril 2014. https://doi.org/10.1007/s13197-011-0571-1

R. H. Mazur, A. H. Goldkamp, P. A. James y J. M. Schlatter, “Structure-taste relation of aspartic acid amides”, J. Med. Chem., vol. 13, no. 6, pp. 1217-1221, Noviembre 1970. https://doi.org/10.1021/jm00300a046

D. Benton, “Can artificial sweeteners help control body weight and prevent obesity?”, Nutr. Res. Rev., vol. 18, no. 1, pp. 63-76, Junio 2005. https://doi.org/10.1079/NRR200494

M. Salimi, A. Esrafili, M. Gholami, A. J. Jafari, R. R. Kalantary, M. Farzadkia, M. Kermani y H. R. Sobhi, “Contaminants of emerging concern: a review of new approach in AOP technologies”, Environ Monit Assess, vol. 189, no. 414, pp. 1-22, Agosto 2017. https://doi.org/10.1007/s10661-017-6097-x

M.G. Lindley, “Sweetener markets, marketing and product development” en Handbook of Sweeteners, 1st. ed. US: Springer, 1991, pp. 186-204. https://doi.org/10.1007/978-1-4757-5380-6

N. H. Tran, J. Hu, J. Li y S. L. Ong, “Suitability of artificial sweeteners as indicators of raw wastewater contamination in surface water and groundwater”, Water Res., vol. 48, pp. 443-456, Enero 2014. https://doi.org/10.1016/j.watres.2013.09.053

Z. Sang, Y. Jiang, Y-K Tsoi y K. S-Y. Leung, “Evaluating the environmental impact of artificial sweeteners: A study of their distributions, photodegradation and toxicities”, Water Res., vol. 52, pp. 260-274, Abril 2014. https://doi.org/10.1016/j.watres.2013.11.002

F. T. Lange, M. Scheurer y H-J. Brauch, “Artificial sweeteners a recently recognized class of emerging environmental contaminants: a review”, Anal Bioanal Chem, vol. 403, no. 9, pp. 2503-2518, Julio 2012. https://doi.org/10.1007/s00216-012-5892-z

J. Luo, Q. Zhang, M. Cao, L. Wud, J. Cao, F. Fang, C. Li, Z. Xue y Q. Feng, “Ecotoxicity and environmental fates of newly recognized contaminants artificial sweeteners: A review”, Sci. Total Environ., vol. 653, pp. 1149-1160, Febrero 2019. https://doi.org/10.1016/j.scitotenv.2018.10.445

Y. Deng y R. Zhao, “Advanced Oxidation Processes (AOPs) in Wastewater Treatment”, Curr Pollution Rep, vol. 1, no. 3, pp. 167-176, Septiembre 2015. https://doi.org/10.1007/s40726-015-0015-z

W. H. Glaze, J-W. Kang y D. H. Chapin, “The Chemistry of Water Treatment Processes Involving Ozone, Hydrogen Peroxide and Ultraviolet Radiation”, Ozone: Sci. Eng., vol. 9, no. 4, pp. 335-352. 1987. https://doi.org/10.1080/01919518708552148

A. A. Mayyahi y H. A. A. Al-Asadi, “Advanced Oxidation Processes (AOPs) for Wastewater Treatment and Reuse: A Brief Review”, Asian Journal of Applied Science and Technology, vol. 2, no. 3, pp. 18-30, Julio-Septiembre 2018.

C. Barrera-Díaz, P. Cañizares, F. J. Fernández, R. Natividad, y M.A. Rodrigo, “Electrochemical advanced oxidation processes: an overview of the current applications to actual industrial effluents”, J. Mex. Chem. Soc., vol. 58, no. 3, pp. 256-275, 2014. https://doi.org/10.29356/jmcs.v58i3.133

S. Garcia-Segura, J. D. Ocon y M. N. Chong, “Electrochemical oxidation remediation of real wastewater effluents - A review”, Process Saf. Environ. Prot., vol. 113, pp. 48-67, Enero 2018. https://doi.org/10.1016/j.psep.2017.09.014

C. A. Martínez-Huitle y M. Panizza, “Electrochemical oxidation of organic pollutants for wastewater treatment”, Current Opinion in Electrochemistry, vol. 11, pp. 62-71, Octubre 2018. https://doi.org/10.1016/j.coelec.2018.07.010

H. Särkkä, A. Bhatnagar y M Sillanpää, “Recent developments of electro-oxidation in water treatment - A review, J. Electroanal. Chem., vol. 754, pp. 46-56, Octubre 2015. https://doi.org/10.1016/j.jelechem.2015.06.016

C. A. Martínez-Huitle y S. Ferro, “Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes”, Chem. Soc. Rev., vol. 35, no. 12, pp. 1324-1340, 2006. https://doi.org/10.1039/B517632H

V. Punturat y K. L. Huang, “Degradation of acesulfame in aqueous solutions by electro-oxidation”, J Taiwan Inst Chem E, vol. 63, pp. 286-294, Junio 2016. https://doi.org/10.1016/j.jtice.2016.03.016

C. Walling, “Fenton’s Reagent Revisited”, Acc. Chem. Res., vol. 8, no. 4, pp. 125-131, Abril 1975. https://doi.org/10.1021/ar50088a003

J. J. Pignatello, D. Liu y P. Huston, “Evidence for an Additional Oxidant in the Photoassisted Fenton Reaction”, Environ. Sci. Technol., vol. 33, no. 11, pp. 1832-1839, Abril - Junio 1999. https://doi.org/10.1021/es980969b

Black & Veatch Corporation, “Advanced Oxidation Processes” en White's Handbook of Chlorination and Alternative Disinfectants, 5th. ed. Wiley, 2011, pp. 976-1002. https://doi.org/10.1002/9780470561331.ch18

P. R. Gogate y A. B. Pandit, “A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions”, Adv Environ Res, vol. 8, no. 3-4, pp. 501-551, Marzo 2004. https://doi.org/10.1016/S1093-0191(03)00032-7

M. Panizza y G. Cerisola, “Removal of organic pollutants from industrial wastewater by electrogenerated Fenton’s reagent”, Water Res., vol. 35, no. 16, pp. 3987-3992, Noviembre 2001. https://doi.org/10.1016/S0043-1354(01)00135-X

S. Qiu, D. He, J. Ma, T. Liu y T. D. Waite, “Kinetic modeling of the electro-fenton process: quantification of reactive oxygen species generation”, Electrochim. Acta, vol. 176, pp. 51-58, Septiembre 2015. http://dx.doi.org/10.1016/j.electacta.2015.06.103

A. Özcana, M. A. Oturan, N. Oturan y Y. Sahin, “Removal of Acid Orange 7 from water by electrochemically generated Fenton’s reagent”, J. Hazard. Mater., vol. 163, no. 2-3, pp. 1213-1220, Abril 2009. https://doi.org/10.1016/j.jhazmat.2008.07.088

H. He y Z. Zhou, “Electro-Fenton process for water and wastewater treatment”, Crit Rev Env Sci Tec, vol. 47, no. 21, pp. 2100-2131, Diciembre 2017. https://doi.org/10.1080/10643389.2017.1405673

H. Lin, N. Oturan, J. Wu, V. K. Sharma, H. Zhang y M. A. Oturan, “Removal of artificial sweetener aspartame from aqueous media by electrochemical advanced oxidation processes” Chemosphere, vol. 167, pp. 220-227, Enero 2017. https://doi.org/10.1016/j.chemosphere.2016.09.143

H. Lin, N. Oturan, J. Wu, H. Zhang y M. A. Oturan, “Cold incineration of sucralose in aqueous solution by electro-Fenton process”, Sep. Purif. Technol., vol. 173, pp. 218-225, Febrero 2017. https://doi.org/10.1016/j.seppur.2016.09.028

H. Lin, N. Oturan, J. Wu, M. A. Oturan y H. Zhang, “The application of electro-Fenton process for the treatment of artificial sweeteners” en Electro-Fenton Process New Trends and Scale-Up, Singapore: Springer, 2018, pp. 379-398. https://doi.org/10.1007/978-981-10-6406-7

S. Trasatti, “Electrocatalysis: understanding the success of DSA®”, Electrochim. Acta, vol. 45, no. 15-16, pp. 2377-2385, Mayo 2000. https://doi.org/10.1016/S0013-4686(00)00338-8

H. Lin, J. Wu, N. Oturan, H. Zhang y M. A. Oturan, “Degradation of artificial sweetener saccharin in aqueous medium by electrochemically generated hydroxyl radicals”, Environ Sci Pollut R, vol. 23, no. 5, pp. 4442-4453, Marzo 2016. https://doi.org/10.1007/s11356-015-5633-x

E. Brillas, I. Sirés y M. A. Oturan, “Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton’s Reaction Chemistry”, Chem. Rev., vol. 109, no. 12, pp. 6570-6631, Octubre 2009. https://doi.org/10.1021/cr900136g

S. R. Pouran, A. R. A. Aziz y W. M. A. W. Daud, “Review on the main advances in photo-Fenton oxidation system for recalcitrant wastewaters”, J. Ind. Eng. Chem., vol. 21, pp. 53-69, Enero 2015. https://doi.org/10.1016/j.jiec.2014.05.005

S-M. Kim y A. Vogelpohl, “Degradation of Organic Pollutants by the Photo-Fenton-Process”, Chem Eng Technol, vol. 21, no. 2, pp. 187-191, Febrero 1998. https://doi.org/10.1002/(SICI)1521-4125(199802)21:2%3C187::AID-CEAT187%3E3.0.CO;2-H

E. Kattel, M. Trapido y N. Dulova, “Oxidative degradation of emerging micropollutant acesulfame in aqueous matrices by UVA-induced H2O2/Fe2+ y S2O_8^(2-)/Fe2+ processes”, Chemosphere, vol. 171, pp. 528-536, Marzo 2017. https://doi.org/10.1016/j.chemosphere.2016.12.104

P. A. Desario y K. A. Gray, “Passive systems to improve air quality and reduce heat retention in the urban environment” en Woodhead Publishing Series in Energy, Metropolitan Sustainability: Understanding and Improving the Urban Environment, 1st ed. Woodhead Publishing, 2012, pp. 292-316. https://doi.org/10.1533/9780857096463.3.292

R. A. Al- Rasheed, “Water treatment by heterogeneous photocatalysis an overview”, in Proceedings of the 4th SWCC Acquired Experience Symposium, Jeddah, Saudi Arabia 2005.

C. C. Kaan, A. A. Aziz, S. Ibrahim, M. Matheswaran y P. Saravanan, “Heterogeneous photocatalytic oxidation an effective tool for wastewater treatment - a review” en Studies on Water Management Issues, London, UK: IntechOpen, 2012, pp. 219-236. https://doi.org/10.5772/30134

A. L. Linsebigler, G. Lu y J. T. Yates, “Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results”, Chem. Rev., vol. 95, no. 3, pp. 735-758, Mayo 1995. https://doi.org/10.1021/cr00035a013

P. Calza, C. Gionco, M. Giletta, M. Kalaboka, V.A. Sakkas, T. Albanis y M.C. Paganini, “Assessment of the abatement of acelsulfame K using cerium doped ZnO as photocatalyst”, J. Hazard. Mater., vol. 323 A, pp. 471-477, Febrero 2017. https://doi.org/10.1016/j.jhazmat.2016.03.093

T. Ohno, K. Sarukawa, K. Tokieda y M. Matsumura, “Morphology of a TiO2 Photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phases”, J. Catal., vol. 203, no. 1, pp. 82-86, Octubre 2001. https://doi.org/10.1006/jcat.2001.3316

M. Ghosh, P. Chowdhury, A. K. Ray, “Study of solar photocatalytic degradation of Acesulfame K to limit the outpouring of artificial sweeteners” Sep. Purif. Technol., vol. 207, pp. 51-57, Diciembre 2018. https://doi.org/10.1016/j.seppur.2018.05.062

M. I. Stefan, “UV/Hydrogen peroxide process” en Advanced Oxidation Processes for Water Treatment: Fundamentals and Applications, London: IWA Publishing, 2017, pp. 7-122. https://doi.org/10.2166/9781780407197_0007

H. C. Urey, L. H. Dawsey y F. O. Rice, “The absorption spectrum and decomposition of hydrogen peroxide by light”, J. Am. Chem. Soc., vol. 51, no. 5, pp. 1371-1383, Mayo 1929. https://doi.org/10.1021/ja01380a011

F. Zaviska, P. Drogui, G. Mercier y J-F. Blais. “Procédés d’oxydation avancée dans le traitement des eaux et des effluents industriels: application à la dégradation des polluants réfractaires”, Revue des Sciences de l’eau, vol. 22, no. 4, pp. 535-564, Octubre 2009. https://doi.org/10.7202/038330ar

M. A. Oturan y J-J. Aaron, “Advanced Oxidation Processes in Water/Wastewater Treatment: Principles and Applications. A Review”, Crit Rev Env Sci and Tec, vol. 44, no. 23, pp. 2577-2641, Septiembre 2014. https://doi.org/10.1080/10643389.2013.829765

D. C. Harris, C. A. Lucy, “Fundamentals of Spectrophotometry” en Quantitative chemical analysis, 9th ed. New York: W. H. Freeman & Company, 2016, pp. 432-460.

Y. Lester, I. Ferrer, E. M. Thurman y K. G. Linden, “Demonstrating sucralose as a monitor of full-scale UV/AOP treatment of trace organic compounds”, J. Hazard. Mater., vol. 280, pp. 104-110, Septiembre 2014. https://doi.org/10.1016/j.jhazmat.2014.07.009

Y. Xu, Z. Lin y H. Zhang, “Mineralization of sucralose by UV-based advanced oxidation processes: UV/PDS versus UV/H2O2”, Chem. Eng. J., vol. 285, pp. 392-401, Febrero 2016. https://doi.org/10.1016/j.cej.2015.09.091

H. Zhou y D.W. Smith, “Advanced technologies in water and wastewater treatment”, J Environ Eng Sci, vol. 1, no. 4, pp. 247-264, Julio 2002. https://doi.org/10.1139/s02-020

K. Ikehata y Y. Li, “Ozone-Based Processes” en Advanced Oxidation Processes for Wastewater Treatment, 1st ed. Academic Press, 2018, pp. 115-134. https://doi.org/10.1016/B978-0-12-810499-6.00005-X

F. J. Beltran, “Kinetics of the Ozone–UV Radiation System” en Ozone Reaction Kinetics for Water and Wastewater Systems, 1st ed. Boca Raton: CRC Press, 2003, pp. 193-226. https://doi.org/10.1201/9780203509173

Y. Xu, Y. Wu, W. Zhang, X. Fan, Y. Wang y H. Zhang, “Performance of artificial sweetener sucralose mineralization via UV/O3 process: Kinetics, toxicity and intermediates”, Chem. Eng. J., vol. 353, pp. 626-634, Diciembre 2018. https://doi.org/10.1016/j.cej.2018.07.090

I. J. Buerge, M. Keller, H-R Buser, M. D. Müller y T. Poiger, “Saccharin and other artificial sweeteners in soils: estimated inputs from agriculture and households, degradation, and leaching to groundwater”, Environ. Sci. Technol., vol. 45, no. 2, pp. 615-621, Enero 2011. https://doi.org/10.1021/es1031272

S. M. Praveena, M. S. Cheema, H-R. Guo, “Non-nutritive artificial sweeteners as an emerging contaminant in environment: A global review and risks perspectives”, Ecotoxicol. Environ. Saf., vol. 170, pp. 699-707, Abril 2019. https://doi.org/10.1016/j.ecoenv.2018.12.048

Publicado

2020-02-21

Cómo citar

Rubí Juárez, H. (2020). Procesos de Oxidación Avanzada y Electroquímicos para Remover Edulcorantes Artificiales del Agua. Cultura Científica Y Tecnológica, 17(1), 1–14. https://doi.org/10.20983/culcyt.2020.1.3.1

Número

Sección

Artículos de revisión