Regeración Ósea y Plasma Rico en Plaquetas en Ingeniería de Tejidos. Revisión.

Autores/as

  • Renato Nieto Aguilar Universidad Michoacana de San Nicolás de Hidalgo http://orcid.org/0000-0002-4009-1942
  • Deyanira Serrato Ochoa
  • Asdrúbal Aguilera Méndez
  • Manuel Salvador Ramírez Valencia
  • Eric Rodríguez

Palabras clave:

plasma rico en plaquetas, diferenciación osteogénica, células troncales con plasma rico en plaquetas

Resumen

La ingeniería tisular (TE) es un campo científico multidisciplinar emergente que tiene como objetivo restaurar, mantener o mejorar las funciones de tejidos y órganos. El conocimiento de estos mecanismos ha permitido el desarrollo de tejido óseo a partir de células osteoprogenitoras, combinados con osteoinductores y osteoconductores que permiten restaurar, y mantener la formación de nuevo tejido óseo, con posibilidades de sustitución y de reactivación de la funcionalidad del tejido que ha perdido estructura, o bien funcionalidad. En este sentido, el plasma rico en plaquetas ha sido empleado como un osteoinductor y promotor de la curación de las heridas en procedimientos dentales y cirugía oral, aunado a ello, es seguro y de fácil obtención. Por ello, ésta revisión pretende exponer los avances y aplicaciones al día de hoy, que el plasma rico en plaquetas reporta en la literatura, en la regeneración ósea mediante ingeniería tisular.

Citas

Aceves-Huerta, A., Arias-Fernández, T., Bernardo, Á., Muñoz-Turrillas, M. C., Fernández- Fuertes, J., Seghatchian, J., & Gutiérrez, L. (2019). Platelet-derived Bio-products: Classification Update, Applications, Concerns and New Perspectives. Transfus. Apher Sci., 31. https://doi.org/10.1016

Afat, I. M., Akdoğan, E. T., & Gönül, O. (2018). Effects of Leukocyte and Platelet-rich Fibrin Alone and Combined with Hyaluronic Acid on Early Soft Tissue Healing after Surgical Extraction of Impacted Mandibular Third Molars: A Prospective Clinical Study. J. Craniomaxil. Surg., 47(2), 280-286. https://doi.org/10.1016/j.jcms.2018.11.023.

Al-Hamed, F. S., Tawfik, M. A., Abdelfadil, E., & Al-Saleh, M. A. Q. (2017). Efficacy of Plateletrich Fibrin after Mandibular Third Molar Extraction: A Systematic Review and Meta-Analysis. J. Oral Maxil. Surg., 75(6), 1124-1135. https://doi.org/10.1016/j.joms.2017.01.022.

Arenaz-Búa, J., Luaces-Rey, R., Sironvalle-Soliva, S., Otero-Rico, A., Charro-Huerga, E., Patiño-Seijas, B., García-Rozado, A., Ferreras-Granados, J., Vázquez-Mahía, I., Lorenzo-Franco, F., Martín-Sastre, R., & López-Cedrún, J. L. (2010). A Comparative Study of Plateletrich Plasma, Hydroxyapatite, Demineralized Bone Matrix and Autologous Bone to Promote Bone Regeneration after Mandibular Impacted Third Molar Extraction. Med. Oral, Patol. Oral, Cir. Bucal, 15(3), e483-e489.

Baudequin, T., & Tabrizian, M. (2018). Multilineage Constructs for Scaffold-based Tissue Engineering: A Review of Tissue-specific Challenges. Adv. Health Mater., 7(3). https://doi.org/10.1002/adhm.201700734.

Biswas, D., & Jiang, P. (2016). Chemically Induced Reprogramming of Somatic Cells to Pluripotent Stem Cells and Neural Cells. Int. J. Mol. Sci., 17(2), 226. https://doi.org/10.3390/ijms17020226.

Blockmans, D., Deckmyn, H., & Vermylen, J. (1995). Platelet Activation. Blood Rev., 9(3), 143-156.

Camargo, P., Lekovic, V., Weinlaender, M., Vasilic, N., Madzarevic, M., & Kenney, E. B. (2002). Platelet-rich Plasma and Bovine Porous Bone Mineral combined with Guided Tissue Regeneration in the Treatment of Intrabony Defects in Humans. J. Periodont. Res., 37(4), 300-306.

Chen, G., Cheng, D., & Chen, B. (2019). Development of CRISPR Technology and its Application in Bone and Cartilage Tissue Engineering. Nan Fang Yi Ke Da Xue Xue Bao, 39(12), 1515-1520. https://doi.org/10.12122/j.issn.1673-4254.2019.12.19.

Choi, B. (2004). Effect of Platelet-rich Plasma on Bone Regeneration in Autogenous Bone Graft. Int. J. Oral Maxil. Surg., 33, 56-59.

Fennis, J. (2002). Mandibular Reconstruction: A Clinical and Radiographic Animal Study on the Use of Autogenous Scaffolds and Plateletrich Plasma. Int. J. Oral Maxil. Surg., 31, 281-286. https://doi.org/10.1054/ijom.2002.0151.

Gao, Y., Zong, S., Huang, Y., Yang, N., Wen, H., Jiang, J., & Duan, J. (2020). Preparation and Properties of a Highly Elastic Galactomannan-poly (Acrylamide- N, N-bis [Acryloyl] Cysteamine) Hydrogel with Reductive Stimuli-responsive Degradable Properties. Carbohydr. Polym., 231. https://doi.org/10.1016/j.carbpol.2019.115690.

Garraud, O., & Tissot, J. D. Blood Components: Are They Drugs or Special Medicines? (2016). Transfus. Clin. Biol., 23(3), 127-131. https://doi.org/10.1016/j.tracli.2016.06.001.

Germain, L., Goulet, F., Moulin, V., Berthod, F., & Auger, F. A. (2002). Engineering Human Tissues for In Vivo Applications. Ann. N. Y. Acad. Sci., 961, 268-270.

Gonchar, I. V., Lipunov, A. R., Afanasov, I. M., Larina, V., Faller, A. P., & Kibardin, A. V. (2017). Platelet-rich Plasma and Growth Factors Cocktails for Diabetic Foot Ulcers Treatment: State of Art Developments and Future Prospects. Diabetes Metab. Syndr., 12(2), 189-194. https://doi.org/10.1016/j.dsx.2017.09.007.

Gray, F. L., Turner, C. G., Ahmed, A., Calvert, C. E., Zurakowski, D., & Fauza, D. O. (2012). Prenatal Tracheal Reconstruction with a Hybrid Amniotic Mesenchymal Stem Cellsengineered Construct derived from Decellularized Airway. J. Pediatr. Surg., 47(6), 1072-1079. https://doi.org/10.1016/j.jpedsurg.2012.03.006.

Griffin, M., Naderi, N., Kalaskar, D. M., Malins, E., Becer, R., Thornton, C. A., Whitaker, I. S., Mosahebi, A., Butler, P. E. M., & Seifalian, A. M. (2018). Evaluation of Sterilisation Techniques for Regenerative Medicine Scaffolds Fabricated with Polyurethane Nonbiodegradable and Bioabsorbable Nanocomposite Materials. Int. J. Biomater., 3. https://doi.org/10.1155/2018/6565783.

Hagiwara, M., & Koh, I. (2020). Engineering Approaches to Control and Design the In Vitro Environment towards the Reconstruction of Organs. Dev. Growth Differ (en prensa). https://doi.org/10.1111/dgd.12647.

He, J., Chen, G., Liu, M., Xu, Z., Chen, H., Yang, L., & Lv, Y. (2020). Scaffold Strategies for Modulating Immune Microenvironment during Bone Regeneration. Mater. Sci. Eng. C. Mater.

Biol. Appl., 108. https://doi.org/10.1016/j.msec.2019.110411.

Jazayeri, H. E., Lee, S. M., Kuhn, L., Fahimipour, F., Tahriri, M., & Tayebi, L. (2019). Polymeric Scaffolds for Dental Pulp Tissue Engineering: A Review. Dent. Mater. https://doi.org/10.1016/j.dental.2019.11.005.

Langer, R., & Vacanti, J. P. (1993). Tissue Engineering. Science, 260(5110), 920-926.

Logeart-Avramoglou, D. (2005). Engineering Bone: Challenges and Obstacles. J. Cell. Mol. Med., 9(1), 72-84.

Marx, R. E., Carlson, E. R., Eichstaedt, R. M., Schimmele, S. R., Strauss, J. E., & Georgeff, K. R. (1998). Platelet-rich Plasma: Growt h Factor Enhancement for Bone Grafts. Oral Surg., Oral Med., Oral Pathol., Oral Radiol., Endodont., 85(6), 638-646.

Plachokova, A. (2009). Bone Regenerative Properties of Rat, Goat and Human Platelet-rich Plasma. Int. J. Oral Maxil. Surg., 38, 861-869. https://doi.org/10.1016/j.ijom.2009.04.009.

Ramaswamy Reddy, S. H., Reddy, R., Babu, N. C., & Ashok, G. N. (2018). Stem-cell Therapy and Platelet-rich plasma in Regenerative Medicines: A Review on Pros and Cons of the Technologies. J. Oral Maxil. Pathol., 22(3), 367-374. https://doi.org/10.4103/jomfp.JOMFP_93_18.

Stock, U. A., & Vacanti, J. P. (2001). Tissue Engineering: Current State and Prospects. An. Rev. Med., 52, 443-451.

Tan, S. Y., Leung, Z., & Wu, A. R. (2020). Recreating Physiological Environments In Vitro: Design Rules for Microfluidic-Based Vascularized Tissue Constructs. Small (en prensa). https://doi.org/10.1002/smll.201905055.

Torricelli, P., Fini, M., Filardo, G., Tschon, M., Pischedda, M., Pacorini, A., Kon, E., & Giardino, R. (2011). Regenerative Medicine for the Treatment of Musculoskeletal Overuse Injuries in Competition Horses. Int. Orthop., 35(10), 1569-1576. https://doi.org/10.1007/s00264-011-1237-3.

Vílchez-Cavazos, F., Millán-Alanís, J. M., Blázquez-Saldaña, J., Álvarez-Villalobos, N., Peña-Martínez, V. M., Acosta-Olivo, C. A., & Simental-Mendía, M. (2019). Comparison of the Clinical Effectiveness of Single versus Multiple Injections of Platelet-rich Plasma in the Treatment of Knee Osteoarthritis: A Systematic Review and Meta-analysis. Orthop. J. Sports Med., 7(12). https://doi.org/10.1177/2325967119887116.

Vinícius, & Moraes (2014). Platelet-rich Therapies for Musculoskeletal Soft Tissue Injuries. Cochrane Data. System. Rev., 1.

Wang, X., Zhang, Y., Choukroun, J., Ghanaati, S., & Miron, R. J. (2018). Effects of an Injectable Platelet-rich Fibrin on Osteoblast Behavior and Bone Tissue Formation in Comparison to Platelet-rich Plasma. Platelets, 29(1), 48-55. https://doi.org/10.1080/09537104.2017.1293807.

Whitman, D. H., Berry, R. L., & Green, D. M. (1997). Platelet Gel: An Autologous Alternative to Fibrin Glue with Applications in Oral and Maxillofacial Surgery. J. Oral Maxil. Surg., 55(11), 1294-1299.

Xiang, X., Shi, P., Zhang, P., Shen, J., & Kang, J. (2019). Impact of Platelet-rich Fibrin on Mandibular Third Molar Surgery Recovery: A Systematic Review and Meta-analysis. bmc Oral Health, 19(1), 163. https://doi.org/10.1186/s12903-019-0824-3.

Zhang, J., Ding, H., Liu, X., Sheng, Y., Liu, X., & Jiang, C. (2019). Dental Follicle Stem Cells: Tissue Engineering and Immunomodulation. Stem Cells Dev., 28(15), 986-994. https://doi.org/10.1089/scd.2019.0012.

Zizzari, V. L., Zara, S., Tetè, G., Vinci, R., Gherlone, E., & Cataldi, A. (2016). Biologic and Clinical Aspects of Integration of Different Bone Substitutes in Oral Surgery: A Literature Review. Oral Surg., Oral Med., Oral Pathol., Oral Radiol., 4, 392-402. https://doi.org/10.1016/j.oooo.2016.04.010.

Descargas

Publicado

2021-03-01

Número

Sección

Artículos de Revisión