
ABSTRACT

Software-defined networks (SDN) seek to solve the problems in current network schemes by simplifying 
their management through their reprogrammability and accessibility to the overall network infrastruc-
ture. One aspect to improve in SDN-based schemes is the precise classification of your traffic load, this 
can improve various aspects such as quality of service, dynamic access control, prioritized random access, 
among others. This research aims to propose a conceptual architecture of SDN and evaluate different ma-
chine learning methods for traffic classification. To this end, SDN architectures are analyzed and different 
modules are proposed to strengthen their management with the help of low computational cost classifiers. 
The architecture proposes the following main modules: Capture network traces module, Learning Engine 
module, and ML-model and Flow classifier. To determine the model to be used in the Learning Engine and 
Flow classifier modules, different classifiers were evaluated using a database of network traffic, as a result, 
it was determined that the gradient boosting algorithm is the most suitable to be integrated with the pro-
posed SDN architecture.
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RESUMEN

Las redes definidas por software (SDN) buscan resolver los problemas de los esquemas de red actuales al 
simplificar su gestión a través de su programabilidad y accesibilidad global a la infraestructura de red. Un 
aspecto para mejorar en esquemas basados en SDN es la clasificación precisa de su carga de tráfico, esto 
puede mejorar diversos aspectos como calidad de servicio, control de acceso dinámico, acceso aleatorio 
priorizado, entre otros. Esta investigación tiene como objetivo proponer una arquitectura conceptual de 
SDN y evaluar diferentes métodos de aprendizaje automático para la clasificación del tráfico. Con este fin, 
se analizan las arquitecturas de SDN y se proponen diferentes módulos para robustecer su gestión con 
ayuda de clasificadores de bajo costo computacional. La arquitectura propone los módulos principales 
siguientes: módulo de captura de datos de red, módulo de aprendizaje con modelo de Machine Learning 
y módulo clasificador de flujo. Para determinar el modelo de ML a utilizar en los módulos de aprendizaje 
y clasificador de flujo, se evaluaron diferentes clasificadores mediante una base de datos, como resultado 
se determinó que el algoritmo de gradient boosting o potenciación del gradiente es el más adecuado para 
integrarse a la arquitectura SDN propuesta.

PALABRAS CLAVE: redes definidas por software; aprendizaje automático; gradient boosting.
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I. INTRODUCTION

Software-Defined Networks (SDN) is an approach to 
address the complexity and challenges that modern 
computer networks face to manage and scale today’s 
requirements. SDN attempts to solve these issues by 
providing a control architecture that is centralized and 
highly scalable. This helps to manage large-scale net-
works and data centers [1]. SDNs have increased re-
cently because of their flexible management and mon-
itoring capabilities, which has been possible because of 
their centralized architecture, which can manage a set 
of switches by modifying flow table entries on demand 
for better adaptation [2]. The control plane in SDN uses 
special protocols, such as OpenFlow, which enables the 
network managers to monitor statistics, decide strate-
gies, and interact with the switches, thus enabling an 
improvement of the network performance [3].

Because of the importance of network management for 
an optimum operation, SDN has been applied also to ad 
hoc networks and in particular to networks consisting 
of devices known as the Internet of Things (IoT) [4], [5]. 
These ad hoc networks have recently experienced rapid 
growth because of their implementation in smart cities, 
industry 4.0, and home automation [6], [7], [8]. These net-
works also have increased their services and related ap-
plications provided through the network, thus recently 
research has been carried out on the integration of SDN 
and IoT [9]. 

Even though the advantages offered by SDN, network 
applications still have challenges related to Quali-
ty-of-Service (QoS) and customized service level agree-
ments (SLAs) [10], [11]. Allocation of resources to ap-
plications to guarantee a certain level of performance, 
availability, and reliability is one of the main concerns 
in SDN schemes as well as optimizing the deployment 
of resources using different mechanisms to meet the 
QoS and SLA [11]. One way to approach this problem is 
through the management of network packets or flows 
through the differentiation of data according to the par-
ticular applications or services provided by the ad hoc 
network. Thus, network traffic classification is an im-
portant component of modern SDN [11].

The problems outlined above make it a necessity to de-
velop approaches to automatically classify network data 
to optimize the deploying of resources using different 
mechanisms to meet the QoS and SLA. The use of ma-

chine learning for classification is key to enabling the 
improvement of the SDN in the network performance. 

In this paper, the performance of several machine learn-
ing classification algorithms for use in SDN is reviewed. 
Also, a conceptual SDN architecture that implements 
a machine learning classification scheme for network 
classification is proposed. 

In the following paragraphs, we review related work 
to our investigation. Thus, some relevant algorithms 
for traffic classification in the context of SDN were re-
viewed. In [10], it is proposed the integration of SDN 
and machine learning to classify data traffic based on 
the applications in a software-defined network platform 
and also the authors evaluated three different learning 
models: Support Vector Machines, nearest centroid, 
and Naive Bayes, methods that were chosen for their 
simplicity. Network traffic traces and flows features of 
the captured data, and these attributes are sent to a clas-
sifier for prediction were used. Higher accuracy for the 
Naive Bayes classifier of 96.79% was found.

In [3], the authors propose an SDN that uses in its control 
plane section a traffic classifier that detects the traffic of 
the data plane and helps the QoS module to modify flow 
rules for the switches. This classifier is based on deep 
learning. The proposed classifier models use long short-
time memory layers (LSTM) and the other convolution-
al layers and LSTM. To find and optimize the neural net-
work hyper-parameters, they used a cross-validated grid 
search and they found that the LSTM model can classi-
fy the network traffic better than the CNN with LSTM 
because the long-term dependency between packets is 
handled properly by the LSTM alone. 

Additionally, a series of traffic classifiers, in this case, 
to detect and predict SYN flood, a case of DoS attack, 
were proposed in [12]. They evaluated machine-learn-
ing algorithms based on Decision Trees, Support Vector 
Machines, and Naive Bayes and perform an analysis of 
their performance. They also implemented a real-time 
system implementing a controller that uses the models 
to classify packets and report that Decision Trees per-
form best on the analysis of the data, while NB has bet-
ter performance in a real-time system.

A method was proposed in [11] for improving traffic 
flows by using machine learning classification. They use 
44 attributes of the packet flow as features, which they 
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reduced further by using Principal Component Analy-
sis. Three different classifier algorithms were evaluated: 
Nearest Centroid, Naive Bayes, and Vector Machines. 
It was found that all the classifiers have a good perfor-
mance, being better by a minimum margin than the 
Nearest Centroid method.

II. METHODOLOGY

In this section, it is described the methodology used, first 
a revision of the theory and background is presented.

A. THEORY AND bACkGROUND

In this section, a general review of the architecture of 
SDN is presented. Also, the considered ML algorithms 
are described.

SDN architecture

As the modern network increases its complexity, its 
management also presents challenges and complicities. 
In recent times, this has been intensified because of the 
use of manual operations and low-level programming 
of vendor-specific devices. SDN tries to alleviate the 
network management and configuration by proposing 
a centralized approach to network management and 
more standard programming of the underlying network 
hardware [2], [13].

The SDN basic architecture consists of an infrastructure 
or data plane, a control plane, and an application plane, 
as shown in Figure 1.

Figure 1. SDN basic architecture.

The Infrastructure or Data plane consists of switch-
ing and routing devices. These devices could be pro-
grammed employing a forwarding table or flow rules 
and in the context of SDN these devices act as simple 
forwarding devices that receive routing paths directly 
from the controller [14].

The Control plane maintains a global view of the net-
work and controls the infrastructure devices by policy 
routing decisions. The controller provides the appli-
cations in the application plane and a programming 
interface that hides the specifics of the infrastructure 
devices [13].

The Application plane consists of SDN applications 
that help to manage the network devices. Generally, the 
applications in this plane are driven by events coming 
from the controller to which the application must react 
appropriately.

This work explores means to improve the SDN perfor-
mance using machine learning for classification and 
the proposal of modules in the control and application 
planes.

MachiNe learNiNg

Next, several machine learning algorithms that could 
be used for network traffic classification are described. 
They were chosen because of their low computational 
cost and ease to train, as compared, for example, with 
deep learning classifiers.

Naive Bayes: This classifier is a probabilistic mod-
el, which predicts the class with the highest posterior 
probability. Naive Bayes assumes independence be-
tween in-stances. However, this assumption is generally 
not true for most data sets, but still, the classifier could 
achieve a decent classification precision. Because of its 
lower computational cost, the Naive Bayes classifier is 
considered first when the application requires real-time 
processing of data. Also, another advantage of this clas-
sifier is that it only requires a small amount of data for 
training [15]. 

Support Vector Machines: A support vector machine 
is a classification algorithm that finds the best possible 
separation between classes. The support vectors define 
the maximum margin of separation of the hyperplane 
that separates the classes. When the classes consid-
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ered are not linearly separable, kernel functions could 
be used with the algorithm to solve the more complex 
problem. The computational cost of this algorithm is 
relatively lower.

K-Nearest Neighbors: In this classification algorithm, 
the complete training data is stored because the model 
does not learn a model but uses explicitly the training 
samples and then is later used for the prediction. The 
new instances are classified by choosing the majority 
class among the K closest examples of the stored data 
[16].

Decision Tree:  These classifiers are composed of nodes, 
each dividing the space of features of the training data 
by grouping observations with similar values [17]. To 
carry out this division, a series of rules called decisions 
are applied, trying that each sub-region contains the 
largest possible samples from one of the classes of the 
data.

Random Forest: In this classification method, bagging 
is used to combine several decision trees. Hence, the 
different trees operate on different segments of the data 
and each tree is trained with different data samples of 
the training set. Finally, by combining the results of the 
different trees, errors of a particular tree could be com-
pensated by other trees, increasing the accuracy and 
generalization of the method [18].

Gradient Boosting: Boosting in the context of machine 
learning refers to creating a strong classifier out of many 
weak ones. Thus, Gradient Boosting consists of several 
classifiers, for these a suitable loss function is used. The 
error calculated from the loss function using a classifier 
is the “gradient” of the gradient boosting, which indi-
cates how to build the next classifier [19]. For this work, 
it is used using an ensemble of decision trees to predict 
a target label.

In the results section, some of these algorithms are eval-
uated using a database of network packets.

b. SDN ARCHITECTURE wITH THE CLASSIFICATION 
OF NETwORk DATA

This section described in detail the proposed architec-
ture. It is outlined the design and described the specific 
steps for its development, details of the modified planes 
are also provided. 

architecture DeSigN

The main goal of the architecture is to increase the 
throughput of the network in the face of changes in traf-
fic that occurs in the network’s normal operation, and 
the proposed scheme focused on traffic-based classifi-
cation in the network. This is accomplished by extend-
ing the functionality of the controller. 

The proposed architecture is implemented as an appli-
cation module, consisting of a module for the training 
model sitting on top of the controller and two modules 
on the control plane: a capture module and a flow classi-
fier. The architecture is shown in Figure 2 and described 
next.

Figure 2. The proposed architecture consists of four modules: Cap-
ture, Learning Engine, Machine Learning (ML) model, and Flow 
classifier.

capture Network traceS MoDule

This module is connected to the underlying SDN infra-
structure to acquire data from the network. Then new 
data is sent to the learned Engine to adapt the model to 
the new environment or infrastructure changes.

learNiNg eNgiNe MoDule aND Ml-MoDel

The module is connected to the capture module, it pro-
cesses the data from the capture module and uses ma-
chine learning algorithms to process the data and train 
a model. The specific implementation depends on the 
machine learning model, for example, for GB the mod-
ule minimizes its loss function with the available data to 
adapt the model to the incoming packets. This module 
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is executed only when the model needs to adapt to new 
data or changing conditions.

Flow claSSiFier

The objective of this module is to classify the flow of 
information. It uses a trained ML model obtained from 
the Learning Engine. Once the flow has been classi-
fied, it is expected that traffic performance increases 
throughout the network.

claSSiFicatioN oF Network Data

For data testing of the Learning Engine module and ML 
model, a machine learning model must be selected. The 
selected model must be easy to implement and with a 
computational complexity that permits real-time pro-
cessing of the data.  Thus, for the selection of the clas-
sification model, the following models are tested: Naive 
Bayes, Support Vector Machines, k-nearest neighbors, 
Random Forest, Decision Tree, and Gradient Boosting. 

C. ExPERIMENTAL SETUP  

The experimental setup is aimed at assessing machine 
learning algorithms for integration with the flow clas-
sification module of the proposed architecture. To this 
end, the performance of several classification methods 
was evaluated. From the available evaluation approach-
es that can be considered as metrics of performance, the 
following were selected: precision, recall, and F1 score.

The experiments involved the use of a data set to test 
the proposed scheme. Thus, we used traffic flow records 
from a database [20]. The data was acquired from a net-
work of the Universidad del Cauca, Popayán, Colombia.

Data packet captures were acquired at different hours of 
the day between April and June 2019. The database con-
sists of a comma-separated values file with each record 
containing 50 features, more details of the database are 
in [20].

For this study, the packet types specified in Table 1, ex-
tracted from the database, were used and the number of 
records to 1495.

Even though the classes are unbalanced, no actions 
were taken to correct it to observe the adaptability of the 
classification algorithms. Note that this database was al-

ready used to evaluate ML algorithms in [20], however, 
in this work the target classes are different from those 
used in that work.

TABLE 1
Classes of the Database

Type #cases
'Network' 270
'Web' 465
'SoftwareUpdate' 22
'Unspecified' 355
'RPC' 28
'System' 41
'Cloud' 40
'Email' 274

Total 1495

The ML models to evaluate were those presented in Sec-
tion A. As stated before, those were chosen because of 
their low computational cost and ease of training. The 
machine learning models were trained on subsets of the 
database and evaluated on the complementary subset of 
the data. To this end, K-fold cross-validation was used, 
this method also allows us to detect possible over-fit-
ting. This technique is frequently used in machine 
learning to compare, validate, and select models, be-
cause it provides a good estimate of the generalization 
achieved by the algorithms, and results in performance 
estimates generally have a lower bias than other meth-
ods. For this experiment, the data set was split into ten 
sections or folds, that is, a value for K equal to 10 was 
used, thus becoming 10-fold cross-validation. During 
the test, each fold was used as a testing set at some point 
in the experiment.

III. RESULTS AND DISCUSSIONS

Here we present the results obtained from evaluating 
the ML models on the dataset. The accuracy of each 
method is shown in Figure 3 using a box plot that con-
denses the obtained results.

From Figure 3, Random Forest (RF) obtained the best 
accuracy overall, followed by Gradient Boosting (GB) 
and Decision Trees (DT), while Gaussian Naive Bayes 
(GNB) has the worst accuracy. This last classifier GNB 
is one with the lowest computational costs, so a future 
work could be to adapt the distribution of the classifier 
to that of the data from network packets.
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Figure 3. Box plot of the accuracy achieved by each method. The 
models presented in the horizontal axis are: Support Vector Ma-
chine (SMV), Gaussian Naive Bayes (GNV), K-Nearest Neighbors 
(KNN), Random Forest (RF), Decision Trees (DT), and Gradient 
Boosting (GB).

Figures 4 to 7, present class prediction error reports 
from the best four classifiers: K-Nearest Neighbors 
(KNN), Random Forest (RF), Decision Trees (DT), and 
Gradient Boosting (GB). For this report, the full data-
base was used, 80% for training and 20% for validation.

Figure 4. Class Prediction error for K-Neighbors.

Figure 5. Class Prediction error for Random Forest.

Figure 6. Class Prediction error for Decision Trees.

Figure 7. Class Prediction error for Gradient Boosting.
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Also, Figures 8 to 11, present the summary of the preci-
sion, recall, and f1 scores.

Figure 8. Classification report for K-Neighbors.

Figure 9. Classification report for Random Forest.

Figure 10. Classification report for Decision Trees.

Figure 11. Classification report for Gradient Boosting.

Gradient Boosting Decision Trees outperforms the 
rest of the classifiers in most categories. However, with 
a low margin  concerning gradient boosting, for class 
‘web’ the best precision is achieved by the random for-
est classifier and for class ‘net’ decision tree is best. It 
is remarkable how gradient boosting Decision Trees 
achieve a good classification even in categories with low 
support. Finally, Table 2 shows a global summary of the 
classification results.

Finally, in this work, it was decided to use classifiers that 
are faster to train and easier to integrate with the classi-
fier module, unlike other works, such as [3], where more 
complex architectures such as LSTM are proposed. It 
was also decided not to calculate features through com-
plex transformations such as the principal component 
analysis, which is proposed in [11]. Furthermore, unlike 
[10], the proposed architecture integrates with the rel-
evant layers of an SDN infrastructure rather than as a 
separate module.

IV. CONCLUSIONS

In this work, a new SND architecture that includes a 
classifier module is presented. The proposed architec-
ture consists of a modification in the application and 
control planes of the SND architecture, to accommo-
date a classification stage.
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TABLE 2
Global Summary

Type
Precision Recall F1

K-N RF DT GB K-N RF DT GB K-N RF DT GB
Email 0.871 0.964 1 1 1 1 1 1 0.931 0.982 1 1
Cloud 1 0.833 0.727 1 0.333 0.833 0.667 0.667 0.5 0.833 0.696 0.8
System 0.875 1 0.818 1 0.778 1 1 1 0.824 1 0.9 1
RPC 0.8 1 1 1 1 1 1 1 0.889 1 1 1
Unsp. 1 1 1 1 0.938 0.938 0.954 0.985 0.968 0.968 0.976 0.992
Soft. U. 0.5 0.833 0.714 1 0.4 1 1 0.8 0.444 0.909 0.833 0.889
Web 0.901 0.967 0.913 0.946 0.921 0.978 0.944 0.978 0.911 0.972 0.928 0.961
Net 0.898 0.93 0.944 0.933 0.93 0.93 0.895 0.982 0.914 0.93 0.919 0.957

 Several classification algorithms in a database of net-
work packets were tested. Algorithms were selected by 
their relatively low computational cost as compared 
with other algorithms such as those based on deep 
learning. Random Forest (RF), Decision Trees (DT), 
and Gradient Boosting (GB) were found to be suitable 
algorithms, each achieving more than 0.9 of accuracy. 
However, overall results show gradient boosting algo-
rithm is the most adequate for the classification module 
in the SDN architecture proposed.
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