
ABSTRACT

Software-defined networks (SDN) seek to solve the problems in current network schemes by simplifying
their management through their reprogrammability and accessibility to the overall network infrastruc-
ture. One aspect to improve in SDN-based schemes is the precise classification of your traffic load, this
can improve various aspects such as quality of service, dynamic access control, prioritized random access,
among others. This research aims to propose a conceptual architecture of SDN and evaluate different ma-
chine learning methods for traffic classification. To this end, SDN architectures are analyzed and different
modules are proposed to strengthen their management with the help of low computational cost classifiers.
The architecture proposes the following main modules: Capture network traces module, Learning Engine
module, and ML-model and Flow classifier. To determine the model to be used in the Learning Engine and
Flow classifier modules, different classifiers were evaluated using a database of network traffic, as a result,
it was determined that the gradient boosting algorithm is the most suitable to be integrated with the pro-
posed SDN architecture.

KEYWORDS: software-defined networks; machine learning; gradient boosting.

RESUMEN

Las redes definidas por software (SDN) buscan resolver los problemas de los esquemas de red actuales al
simplificar su gestión a través de su programabilidad y accesibilidad global a la infraestructura de red. Un
aspecto para mejorar en esquemas basados en SDN es la clasificación precisa de su carga de tráfico, esto
puede mejorar diversos aspectos como calidad de servicio, control de acceso dinámico, acceso aleatorio
priorizado, entre otros. Esta investigación tiene como objetivo proponer una arquitectura conceptual de
SDN y evaluar diferentes métodos de aprendizaje automático para la clasificación del tráfico. Con este fin,
se analizan las arquitecturas de SDN y se proponen diferentes módulos para robustecer su gestión con
ayuda de clasificadores de bajo costo computacional. La arquitectura propone los módulos principales
siguientes: módulo de captura de datos de red, módulo de aprendizaje con modelo de Machine Learning
y módulo clasificador de flujo. Para determinar el modelo de ML a utilizar en los módulos de aprendizaje
y clasificador de flujo, se evaluaron diferentes clasificadores mediante una base de datos, como resultado
se determinó que el algoritmo de gradient boosting o potenciación del gradiente es el más adecuado para
integrarse a la arquitectura SDN propuesta.

PALABRAS CLAVE: redes definidas por software; aprendizaje automático; gradient boosting.

Corresponding author: Jose Mejia
Institution: Universidad Autónoma de Ciudad Juárez / Instituto
de Ingeniería y Tecnología
Address: Av. Del Charro núm. 450 norte, col. Partido Romero,
Ciudad Juárez, Chihuahua, México, C. P. 32310
E-mail: jose.mejia@uacj.mx

Manuscript received: December 8, 2021; accepted: April 1,
2022. Date of publication: April 28, 2022.

DOI: 10.20983/culcyt.2022.1.2.2

Smart architecture for software-defined networking
Arquitectura inteligente para redes definidas por software
Jose Mejia*1, Oliverio Cruz-Mejia2, José Alfredo Acosta-Favela1, Alejandra Mendoza-Carreón1, René Noriega
Armendáriz1

1 Universidad Autónoma de Ciudad Juárez (UACJ)
2 Universidad Nacional Autónoma de México (UNAM)

RE
SE

A
RC

H
 A

RT
IC

LE

P E E R
R E V I E W

CULTURA CIENTÍFICA Y TECNOLÓGICA
ISSN (electrónico) 2007-0411

Volume 19 · Issue 1
January-April 2022
Pages 1-9

Creative Commons License

http://dx.doi.org/10.20983/culcyt.2022.1.2.2

DOI: 10.20983/culcyt.2022.1.2.2 ISSN (e): 2007-0411

Jose Mejia et al. | Smart architecture for software-defined
networking | RESEARCH ARTICLE

Cultura Científica y Tecnológica | Vol. 19, Issue 1
Pages 1-9 | January-April 2022 2

I. INTRODUCTION

Software-Defined Networks (SDN) is an approach to
address the complexity and challenges that modern
computer networks face to manage and scale today’s
requirements. SDN attempts to solve these issues by
providing a control architecture that is centralized and
highly scalable. This helps to manage large-scale net-
works and data centers [1]. SDNs have increased re-
cently because of their flexible management and mon-
itoring capabilities, which has been possible because of
their centralized architecture, which can manage a set
of switches by modifying flow table entries on demand
for better adaptation [2]. The control plane in SDN uses
special protocols, such as OpenFlow, which enables the
network managers to monitor statistics, decide strate-
gies, and interact with the switches, thus enabling an
improvement of the network performance [3].

Because of the importance of network management for
an optimum operation, SDN has been applied also to ad
hoc networks and in particular to networks consisting
of devices known as the Internet of Things (IoT) [4], [5].
These ad hoc networks have recently experienced rapid
growth because of their implementation in smart cities,
industry 4.0, and home automation [6], [7], [8]. These net-
works also have increased their services and related ap-
plications provided through the network, thus recently
research has been carried out on the integration of SDN
and IoT [9].

Even though the advantages offered by SDN, network
applications still have challenges related to Quali-
ty-of-Service (QoS) and customized service level agree-
ments (SLAs) [10], [11]. Allocation of resources to ap-
plications to guarantee a certain level of performance,
availability, and reliability is one of the main concerns
in SDN schemes as well as optimizing the deployment
of resources using different mechanisms to meet the
QoS and SLA [11]. One way to approach this problem is
through the management of network packets or flows
through the differentiation of data according to the par-
ticular applications or services provided by the ad hoc
network. Thus, network traffic classification is an im-
portant component of modern SDN [11].

The problems outlined above make it a necessity to de-
velop approaches to automatically classify network data
to optimize the deploying of resources using different
mechanisms to meet the QoS and SLA. The use of ma-

chine learning for classification is key to enabling the
improvement of the SDN in the network performance.

In this paper, the performance of several machine learn-
ing classification algorithms for use in SDN is reviewed.
Also, a conceptual SDN architecture that implements
a machine learning classification scheme for network
classification is proposed.

In the following paragraphs, we review related work
to our investigation. Thus, some relevant algorithms
for traffic classification in the context of SDN were re-
viewed. In [10], it is proposed the integration of SDN
and machine learning to classify data traffic based on
the applications in a software-defined network platform
and also the authors evaluated three different learning
models: Support Vector Machines, nearest centroid,
and Naive Bayes, methods that were chosen for their
simplicity. Network traffic traces and flows features of
the captured data, and these attributes are sent to a clas-
sifier for prediction were used. Higher accuracy for the
Naive Bayes classifier of 96.79% was found.

In [3], the authors propose an SDN that uses in its control
plane section a traffic classifier that detects the traffic of
the data plane and helps the QoS module to modify flow
rules for the switches. This classifier is based on deep
learning. The proposed classifier models use long short-
time memory layers (LSTM) and the other convolution-
al layers and LSTM. To find and optimize the neural net-
work hyper-parameters, they used a cross-validated grid
search and they found that the LSTM model can classi-
fy the network traffic better than the CNN with LSTM
because the long-term dependency between packets is
handled properly by the LSTM alone.

Additionally, a series of traffic classifiers, in this case,
to detect and predict SYN flood, a case of DoS attack,
were proposed in [12]. They evaluated machine-learn-
ing algorithms based on Decision Trees, Support Vector
Machines, and Naive Bayes and perform an analysis of
their performance. They also implemented a real-time
system implementing a controller that uses the models
to classify packets and report that Decision Trees per-
form best on the analysis of the data, while NB has bet-
ter performance in a real-time system.

A method was proposed in [11] for improving traffic
flows by using machine learning classification. They use
44 attributes of the packet flow as features, which they

http://dx.doi.org/10.20983/culcyt.2022.1.2.2

DOI: 10.20983/culcyt.2022.1.2.2 ISSN (e): 2007-0411

Jose Mejia et al. | Smart architecture for software-defined
networking | RESEARCH ARTICLE

Cultura Científica y Tecnológica | Vol. 19, Issue 1
Pages 1-9 | January-April 2022 3

reduced further by using Principal Component Analy-
sis. Three different classifier algorithms were evaluated:
Nearest Centroid, Naive Bayes, and Vector Machines.
It was found that all the classifiers have a good perfor-
mance, being better by a minimum margin than the
Nearest Centroid method.

II. METHODOLOGY

In this section, it is described the methodology used, first
a revision of the theory and background is presented.

A. THEORY AND bACkGROUND

In this section, a general review of the architecture of
SDN is presented. Also, the considered ML algorithms
are described.

SDN architecture

As the modern network increases its complexity, its
management also presents challenges and complicities.
In recent times, this has been intensified because of the
use of manual operations and low-level programming
of vendor-specific devices. SDN tries to alleviate the
network management and configuration by proposing
a centralized approach to network management and
more standard programming of the underlying network
hardware [2], [13].

The SDN basic architecture consists of an infrastructure
or data plane, a control plane, and an application plane,
as shown in Figure 1.

Figure 1. SDN basic architecture.

The Infrastructure or Data plane consists of switch-
ing and routing devices. These devices could be pro-
grammed employing a forwarding table or flow rules
and in the context of SDN these devices act as simple
forwarding devices that receive routing paths directly
from the controller [14].

The Control plane maintains a global view of the net-
work and controls the infrastructure devices by policy
routing decisions. The controller provides the appli-
cations in the application plane and a programming
interface that hides the specifics of the infrastructure
devices [13].

The Application plane consists of SDN applications
that help to manage the network devices. Generally, the
applications in this plane are driven by events coming
from the controller to which the application must react
appropriately.

This work explores means to improve the SDN perfor-
mance using machine learning for classification and
the proposal of modules in the control and application
planes.

MachiNe learNiNg

Next, several machine learning algorithms that could
be used for network traffic classification are described.
They were chosen because of their low computational
cost and ease to train, as compared, for example, with
deep learning classifiers.

Naive Bayes: This classifier is a probabilistic mod-
el, which predicts the class with the highest posterior
probability. Naive Bayes assumes independence be-
tween in-stances. However, this assumption is generally
not true for most data sets, but still, the classifier could
achieve a decent classification precision. Because of its
lower computational cost, the Naive Bayes classifier is
considered first when the application requires real-time
processing of data. Also, another advantage of this clas-
sifier is that it only requires a small amount of data for
training [15].

Support Vector Machines: A support vector machine
is a classification algorithm that finds the best possible
separation between classes. The support vectors define
the maximum margin of separation of the hyperplane
that separates the classes. When the classes consid-

http://dx.doi.org/10.20983/culcyt.2022.1.2.2

DOI: 10.20983/culcyt.2022.1.2.2 ISSN (e): 2007-0411

Jose Mejia et al. | Smart architecture for software-defined
networking | RESEARCH ARTICLE

Cultura Científica y Tecnológica | Vol. 19, Issue 1
Pages 1-9 | January-April 2022

ered are not linearly separable, kernel functions could
be used with the algorithm to solve the more complex
problem. The computational cost of this algorithm is
relatively lower.

K-Nearest Neighbors: In this classification algorithm,
the complete training data is stored because the model
does not learn a model but uses explicitly the training
samples and then is later used for the prediction. The
new instances are classified by choosing the majority
class among the K closest examples of the stored data
[16].

Decision Tree: These classifiers are composed of nodes,
each dividing the space of features of the training data
by grouping observations with similar values [17]. To
carry out this division, a series of rules called decisions
are applied, trying that each sub-region contains the
largest possible samples from one of the classes of the
data.

Random Forest: In this classification method, bagging
is used to combine several decision trees. Hence, the
different trees operate on different segments of the data
and each tree is trained with different data samples of
the training set. Finally, by combining the results of the
different trees, errors of a particular tree could be com-
pensated by other trees, increasing the accuracy and
generalization of the method [18].

Gradient Boosting: Boosting in the context of machine
learning refers to creating a strong classifier out of many
weak ones. Thus, Gradient Boosting consists of several
classifiers, for these a suitable loss function is used. The
error calculated from the loss function using a classifier
is the “gradient” of the gradient boosting, which indi-
cates how to build the next classifier [19]. For this work,
it is used using an ensemble of decision trees to predict
a target label.

In the results section, some of these algorithms are eval-
uated using a database of network packets.

b. SDN ARCHITECTURE wITH THE CLASSIFICATION
OF NETwORk DATA

This section described in detail the proposed architec-
ture. It is outlined the design and described the specific
steps for its development, details of the modified planes
are also provided.

architecture DeSigN

The main goal of the architecture is to increase the
throughput of the network in the face of changes in traf-
fic that occurs in the network’s normal operation, and
the proposed scheme focused on traffic-based classifi-
cation in the network. This is accomplished by extend-
ing the functionality of the controller.

The proposed architecture is implemented as an appli-
cation module, consisting of a module for the training
model sitting on top of the controller and two modules
on the control plane: a capture module and a flow classi-
fier. The architecture is shown in Figure 2 and described
next.

Figure 2. The proposed architecture consists of four modules: Cap-
ture, Learning Engine, Machine Learning (ML) model, and Flow
classifier.

capture Network traceS MoDule

This module is connected to the underlying SDN infra-
structure to acquire data from the network. Then new
data is sent to the learned Engine to adapt the model to
the new environment or infrastructure changes.

learNiNg eNgiNe MoDule aND Ml-MoDel

The module is connected to the capture module, it pro-
cesses the data from the capture module and uses ma-
chine learning algorithms to process the data and train
a model. The specific implementation depends on the
machine learning model, for example, for GB the mod-
ule minimizes its loss function with the available data to
adapt the model to the incoming packets. This module

4

http://dx.doi.org/10.20983/culcyt.2022.1.2.2

DOI: 10.20983/culcyt.2022.1.2.2 ISSN (e): 2007-0411

Jose Mejia et al. | Smart architecture for software-defined
networking | RESEARCH ARTICLE

Cultura Científica y Tecnológica | Vol. 19, Issue 1
Pages 1-9 | January-April 2022 5

is executed only when the model needs to adapt to new
data or changing conditions.

Flow claSSiFier

The objective of this module is to classify the flow of
information. It uses a trained ML model obtained from
the Learning Engine. Once the flow has been classi-
fied, it is expected that traffic performance increases
throughout the network.

claSSiFicatioN oF Network Data

For data testing of the Learning Engine module and ML
model, a machine learning model must be selected. The
selected model must be easy to implement and with a
computational complexity that permits real-time pro-
cessing of the data. Thus, for the selection of the clas-
sification model, the following models are tested: Naive
Bayes, Support Vector Machines, k-nearest neighbors,
Random Forest, Decision Tree, and Gradient Boosting.

C. ExPERIMENTAL SETUP

The experimental setup is aimed at assessing machine
learning algorithms for integration with the flow clas-
sification module of the proposed architecture. To this
end, the performance of several classification methods
was evaluated. From the available evaluation approach-
es that can be considered as metrics of performance, the
following were selected: precision, recall, and F1 score.

The experiments involved the use of a data set to test
the proposed scheme. Thus, we used traffic flow records
from a database [20]. The data was acquired from a net-
work of the Universidad del Cauca, Popayán, Colombia.

Data packet captures were acquired at different hours of
the day between April and June 2019. The database con-
sists of a comma-separated values file with each record
containing 50 features, more details of the database are
in [20].

For this study, the packet types specified in Table 1, ex-
tracted from the database, were used and the number of
records to 1495.

Even though the classes are unbalanced, no actions
were taken to correct it to observe the adaptability of the
classification algorithms. Note that this database was al-

ready used to evaluate ML algorithms in [20], however,
in this work the target classes are different from those
used in that work.

TABLE 1
Classes of the Database

Type #cases
'Network' 270
'Web' 465
'SoftwareUpdate' 22
'Unspecified' 355
'RPC' 28
'System' 41
'Cloud' 40
'Email' 274

Total 1495

The ML models to evaluate were those presented in Sec-
tion A. As stated before, those were chosen because of
their low computational cost and ease of training. The
machine learning models were trained on subsets of the
database and evaluated on the complementary subset of
the data. To this end, K-fold cross-validation was used,
this method also allows us to detect possible over-fit-
ting. This technique is frequently used in machine
learning to compare, validate, and select models, be-
cause it provides a good estimate of the generalization
achieved by the algorithms, and results in performance
estimates generally have a lower bias than other meth-
ods. For this experiment, the data set was split into ten
sections or folds, that is, a value for K equal to 10 was
used, thus becoming 10-fold cross-validation. During
the test, each fold was used as a testing set at some point
in the experiment.

III. RESULTS AND DISCUSSIONS

Here we present the results obtained from evaluating
the ML models on the dataset. The accuracy of each
method is shown in Figure 3 using a box plot that con-
denses the obtained results.

From Figure 3, Random Forest (RF) obtained the best
accuracy overall, followed by Gradient Boosting (GB)
and Decision Trees (DT), while Gaussian Naive Bayes
(GNB) has the worst accuracy. This last classifier GNB
is one with the lowest computational costs, so a future
work could be to adapt the distribution of the classifier
to that of the data from network packets.

http://dx.doi.org/10.20983/culcyt.2022.1.2.2

DOI: 10.20983/culcyt.2022.1.2.2 ISSN (e): 2007-0411

Jose Mejia et al. | Smart architecture for software-defined
networking | RESEARCH ARTICLE

Cultura Científica y Tecnológica | Vol. 19, Issue 1
Pages 1-9 | January-April 2022

Figure 3. Box plot of the accuracy achieved by each method. The
models presented in the horizontal axis are: Support Vector Ma-
chine (SMV), Gaussian Naive Bayes (GNV), K-Nearest Neighbors
(KNN), Random Forest (RF), Decision Trees (DT), and Gradient
Boosting (GB).

Figures 4 to 7, present class prediction error reports
from the best four classifiers: K-Nearest Neighbors
(KNN), Random Forest (RF), Decision Trees (DT), and
Gradient Boosting (GB). For this report, the full data-
base was used, 80% for training and 20% for validation.

Figure 4. Class Prediction error for K-Neighbors.

Figure 5. Class Prediction error for Random Forest.

Figure 6. Class Prediction error for Decision Trees.

Figure 7. Class Prediction error for Gradient Boosting.

6

http://dx.doi.org/10.20983/culcyt.2022.1.2.2

DOI: 10.20983/culcyt.2022.1.2.2 ISSN (e): 2007-0411

Jose Mejia et al. | Smart architecture for software-defined
networking | RESEARCH ARTICLE 7Cultura Científica y Tecnológica | Vol. 19, Issue 1

Pages 1-9 | January-April 2022

Also, Figures 8 to 11, present the summary of the preci-
sion, recall, and f1 scores.

Figure 8. Classification report for K-Neighbors.

Figure 9. Classification report for Random Forest.

Figure 10. Classification report for Decision Trees.

Figure 11. Classification report for Gradient Boosting.

Gradient Boosting Decision Trees outperforms the
rest of the classifiers in most categories. However, with
a low margin concerning gradient boosting, for class
‘web’ the best precision is achieved by the random for-
est classifier and for class ‘net’ decision tree is best. It
is remarkable how gradient boosting Decision Trees
achieve a good classification even in categories with low
support. Finally, Table 2 shows a global summary of the
classification results.

Finally, in this work, it was decided to use classifiers that
are faster to train and easier to integrate with the classi-
fier module, unlike other works, such as [3], where more
complex architectures such as LSTM are proposed. It
was also decided not to calculate features through com-
plex transformations such as the principal component
analysis, which is proposed in [11]. Furthermore, unlike
[10], the proposed architecture integrates with the rel-
evant layers of an SDN infrastructure rather than as a
separate module.

IV. CONCLUSIONS

In this work, a new SND architecture that includes a
classifier module is presented. The proposed architec-
ture consists of a modification in the application and
control planes of the SND architecture, to accommo-
date a classification stage.

http://dx.doi.org/10.20983/culcyt.2022.1.2.2

DOI: 10.20983/culcyt.2022.1.2.2 ISSN (e): 2007-0411

Jose Mejia et al. | Smart architecture for software-defined
networking | RESEARCH ARTICLE 8Cultura Científica y Tecnológica | Vol. 19, Issue 1

Pages 1-9 | January-April 2022

TABLE 2
Global Summary

Type
Precision Recall F1

K-N RF DT GB K-N RF DT GB K-N RF DT GB
Email 0.871 0.964 1 1 1 1 1 1 0.931 0.982 1 1
Cloud 1 0.833 0.727 1 0.333 0.833 0.667 0.667 0.5 0.833 0.696 0.8
System 0.875 1 0.818 1 0.778 1 1 1 0.824 1 0.9 1
RPC 0.8 1 1 1 1 1 1 1 0.889 1 1 1
Unsp. 1 1 1 1 0.938 0.938 0.954 0.985 0.968 0.968 0.976 0.992
Soft. U. 0.5 0.833 0.714 1 0.4 1 1 0.8 0.444 0.909 0.833 0.889
Web 0.901 0.967 0.913 0.946 0.921 0.978 0.944 0.978 0.911 0.972 0.928 0.961
Net 0.898 0.93 0.944 0.933 0.93 0.93 0.895 0.982 0.914 0.93 0.919 0.957

 Several classification algorithms in a database of net-
work packets were tested. Algorithms were selected by
their relatively low computational cost as compared
with other algorithms such as those based on deep
learning. Random Forest (RF), Decision Trees (DT),
and Gradient Boosting (GB) were found to be suitable
algorithms, each achieving more than 0.9 of accuracy.
However, overall results show gradient boosting algo-
rithm is the most adequate for the classification module
in the SDN architecture proposed.

REFERENCES

[1] N. Noorani y S. A. H. Seno, “SDN- and fog comput-
ing-based switchable routing using path stability estima-
tion for vehicular ad hoc networks”, Peer-to-Peer Netw.
Appl., vol. 13, pp. 948-964, may. 2020, doi: 10.1007/
s12083-019-00859-4.

[2] A. R. Mohammed, S. A. Mohammed y S. Shirmoham-
madi, “Machine Learning and Deep Learning Based
Traffic Classification and Prediction in Software De-
fined Networking”, 2019 IEEE International Symposium
on Measurements & Networking (M&N), 2019, pp. 1-6,
doi: 10.1109/IWMN.2019.8805044.

[3] J. Mejia, L. Avelar-Sosa, B. Mederos, E. Santiago y J. D.
Díaz, “Prediction of time series using an analysis filter
bank of LSTM units”, Comput Ind Eng, vol. 157, 2021,
doi: 10.1016/j.cie.2021.107371.

[4] K. Sood, S. Yu y Y. Xiang, “Software-Defined Wireless
Networking Opportunities and Challenges for Inter-
net-of-Things: A Review”, en IEEE Internet of Things

Journal, vol. 3, no. 4, pp. 453-463, ag. 2016, doi: 10.1109/
JIOT.2015.2480421.

[5] S. H. Rastegar, A. Abbasfar y V. Shah-Mansouri, “Rule
Caching in SDN-Enabled Base Stations Supporting
Massive IoT Devices With Bursty Traffic”, en IEEE Inter-
net of Things Journal, vol. 7, no. 9, pp. 8917-8931, sept.
2020, doi: 10.1109/JIOT.2020.3000393.

[6] B. K. Mukherjee, S. I. Pappu, M. J. Islam y U. K.
Acharjee, “An SDN based distributed IoT network with
NFV implementation for smart cities”, en Cyber Security
and Computer Science, T. Bhuiyan, M. M. Rahman y M.
A. Eli, Eds., Springer, Cham, 2020, doi: 10.1007/978-3-
030-52856-0_43.

[7] Y. -W. Ma, Y. -C. Chen y J. -L. Chen, “SDN-enabled
network virtualization for industry 4.0 based on IoTs
and cloud computing”, 2017 19th International Confer-
ence on Advanced Communication Technology (ICACT),
2017, pp. 199-202, doi: 10.23919/ICACT.2017.7890083.

[8] L. Silva, P. Pedreiras, P. Fonseca y L. Almeida, “On the
adequacy of SDN and TSN for Industry 4.0”, 2019 IEEE
22nd International Symposium on Real-Time Distribut-
ed Computing (ISORC), 2019, pp. 43-51, doi: 10.1109/
ISORC.2019.00017.

[9] A. Yazdinejad, R. M. Parizi, A. Dehghantanha, Q. Zhang
y K. -K. R. Choo, “An Energy-Efficient SDN Controller
Architecture for IoT Networks With Blockchain-Based
Security”, en IEEE Transactions on Services Computing,
vol. 13, no. 4, pp. 625-638, 1 jul.-ag. 2020, doi: 10.1109/
TSC.2020.2966970.

http://dx.doi.org/10.20983/culcyt.2022.1.2.2
https://doi.org/10.1007/s12083-019-00859-4
https://doi.org/10.1007/s12083-019-00859-4
https://doi.org/10.1109/IWMN.2019.8805044
https://doi.org/10.1016/j.cie.2021.107371
https://doi.org/10.1109/JIOT.2015.2480421
https://doi.org/10.1109/JIOT.2015.2480421
https://doi.org/10.1109/JIOT.2020.3000393
https://doi.org/10.1007/978-3-030-52856-0_43
https://doi.org/10.1007/978-3-030-52856-0_43
https://doi.org/10.23919/ICACT.2017.7890083
https://doi.org/10.1109/ISORC.2019.00017
https://doi.org/10.1109/ISORC.2019.00017
https://doi.org/10.1109/TSC.2020.2966970
https://doi.org/10.1109/TSC.2020.2966970

DOI: 10.20983/culcyt.2022.1.2.2 ISSN (e): 2007-0411

Jose Mejia et al. | Smart architecture for software-defined
networking | RESEARCH ARTICLE 9Cultura Científica y Tecnológica | Vol. 19, Issue 1

Pages 1-9 | January-April 2022

[10] M. M. Raikar, S. M. Meena, M. M. Mulla, N. S. Shetti y
M. Karanandi, “Data Traffic Classification in Software
Defined Networks (SDN) using supervised-learning”,
Procedia Comput. Sci., vol. 171, pp. 2750-2759, 2020,
doi: 10.1016/j.procs.2020.04.299.

[11] M. Amiri, H. Al Osman y S. Shirmohammadi, “Game-
Aware and SDN-Assisted Bandwidth Allocation for
Data Center Networks”, 2018 IEEE Conference on Mul-
timedia Information Processing and Retrieval (MIPR),
2018, pp. 86-91, doi: 10.1109/MIPR.2018.00023.

[12] S. Gangadhar y J. P. G. Sterbenz, “Machine learning aid-
ed traffic tolerance to improve resilience for software
defined networks”, 2017 9th International Workshop on
Resilient Networks Design and Modeling (RNDM), 2017,
pp. 1-7, doi: 10.1109/RNDM.2017.8093035.

[13] P. Goransson, C. Black y T. Culver, Software defined net-
works: a comprehensive approach, Morgan Kaufmann,
2016.

[14] N. McKeown et al., “Openflow: enabling innovation in
campus networks”, ACM SIGCOMM Computer Com-
munication Review, vol. 38, no. 2, pp. 69-74, 2008, doi:
10.1145/1355734.1355746.

[15] R. Mosquera, O. D. Castrillón y L. Parra, “Máquinas
de Soporte Vectorial, Clasificador Naïve Bayes y Algo-
ritmos Genéticos para la Predicción de Riesgos Psico-

sociales en Docentes de Colegios Públicos Colombia-
nos”, Inf. Tecnol., vol. 29, no. 6, pp. 153-162, 2018, doi:
10.4067/S0718-07642018000600153.

[16] P. Horton y K. Nakai, “Better Prediction of Protein Cel-
lular Localization Sites with the it k Nearest Neighbors
Classifier”, en Proc Int Conf Intell Syst Mol Biol, vol. 5,
pp. 147-152, jun. 1997.

[17] S. R. Safavian y D. Landgrebe, “A survey of decision tree
classifier methodology”, en IEEE Transactions on Sys-
tems, Man, and Cybernetics, vol. 21, no. 3, pp. 660-674,
may.-jun. 1991, doi: 10.1109/21.97458.

[18] V. F. Rodriguez-Galiano, B. Ghimire, J. Rogan, M.
Chica-Olmo y J. P. Rigol-Sanchez, “An assessment
of the effectiveness of a random forest classifier for
land-cover classification”, ISPRS J. Photogramm. Remote
Sens., vol. 67, pp. 93-104, 2012, doi: 10.1016/j.isprs-
jprs.2011.11.002.

[19] G. Biau, B. Cadre y L. Rouvìère, “Accelerated gradient
boosting”, Mach Learn, vol. 108, no. 6, pp. 971-992,
2019, doi: 10.1007/s10994-019-05787-1.

[20] J. S. Rojas, A. Pekar, Á. Rendón y J. C. Corrales, “Smart
User Consumption Profiling: Incremental Learn-
ing-Based OTT Service Degradation”, en IEEE Access,
vol. 8, pp. 207426-207442, 2020, doi: 10.1109/AC-
CESS.2020.3037971.

http://dx.doi.org/10.20983/culcyt.2022.1.2.2
https://doi.org/10.1016/j.procs.2020.04.299
https://doi.org/10.1109/MIPR.2018.00023
https://doi.org/10.1109/RNDM.2017.8093035
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.4067/S0718-07642018000600153
http://dx.doi.org/10.4067/S0718-07642018000600153
https://doi.org/10.1109/21.97458
https://doi.org/10.1016/j.isprsjprs.2011.11.002
https://doi.org/10.1016/j.isprsjprs.2011.11.002
https://doi.org/10.1007/s10994-019-05787-1
https://doi.org/10.1109/ACCESS.2020.3037971
https://doi.org/10.1109/ACCESS.2020.3037971

