BALANCE Y PERSPECTIVAS DE LA Administración del Água en el Municipio de Juárez. Parte I

Mtro. Ranulfo Lemus Sánchez¹

¹Consultor en Ingeniería Hidráulica, Eléctrica y Medio Ambiente

RESUMEN

Se realizó un acopio de información básica sobre el agua y temas asociados, como temperatura, fisiografía, e hidrología, para describir el medio físico en el que se lleva a cabo la administración del agua en el Municipio de Juárez. Se muestra que la región carece de aguas superficiales y que, con relación a las aguas subterráneas, el acuífero del Bolsón de Hueco es insustentable para el futuro desarrollo regional. Esto es verificable mediante la observación del abatimiento de los niveles estáticos detectados entre los años 1962-2015.

Palabras clave: Administración del agua, Municipio de Juárez, Acuífero

Antecedentes

El Municipio de Juárez se encuentra alienado geográficamente con los grandes desiertos a escala mundial. Los siguientes apartados dan evidencia de este hecho.

Área de estudio

Ciudad Juárez se encuentra ubicado en las siguientes coordenadas geográficas tomadas desde la Torre de la Parroquia de Nuestra Señora de Guadalupe, en el centro de la ciudad:

Latitud Norte:

31° 44′ 27″

• Longitud Noroeste:

106° 29′ 22″

• Altitud sobre el nivel del mar: 1.144 m

Clima

De acuerdo a la clasificación de climas realizada por Köeppen para las condiciones de la República Mexicana, el clima de la región es muy desértico y se clasifica por su humedad y temperatura como BWkx'(e'), templado con verano cálido. El clima que predomina en la región se caracteriza por ser extremoso, con temperaturas de hasta 45° C. Si comparamos los datos anteriores con los desiertos internacionales, similares, por lo que la ciudad se encuentra expuesta a fenómenos naturales como escasez de lluvia, con precipitación media anual de 248 mm, (1957-2013) y una precipitación máxima horaria de 80.3 mm registrada el 12 de julio de 2006.

Fisiografía

La región presenta características y formas muy diversas. A excepción hecha de los lomeríos bajos existentes al oeste de la ciudad, podría decirse que es una planicie de suaves desniveles.

Geología

Las rocas que afloran en la región son de tres tipos:

- Sedimentarias bien consolidadas: calizas, cuarcitas y areniscas
- Rocas ígneas: granitos, pórfido riolítico y basaltos
- Diversos sedimentos poco consolidados: gravas, arena y depósitos aluviales

Es característica la presencia en el subsuelo, al oeste de la planicie, de una capa de caliche cuyo espesor varía entre 60 cm y 3 m, y se encuentra, por regla general, a un metro de profundidad. El caliche forma un impermeable que dificulta manto infiltración de las aguas superficiales. Las capas de grava se encuentran a 100 m de profundidad. Las de arena son las más extensas abundantes, formando probablemente un 50% de los sedimentos.

Hidrología

El Río Bravo nace en las montañas Rocallosas del Suroeste del Estado de los Estado Unidos Colorado, en Norteamérica (EE.UU.) y recibe el nombre de Río Grande. La longitud del río, desde su nacimiento hasta su desembocadura en el Golfo de México, es de 3,057.1 km, y es controlado aguas arriba de Ciudad Juárez por presas "Americana," "Caballo" "Elefante", por lo que del lado mexicano solo ocasiones conduce raras apreciables. Puede decirse que su utilidad actual es de canal de riego y durante prolongadas temporadas su gasto es nulo.

En la región de Ciudad Juárez y El Paso, Texas, existen dos tipos principales de acuíferos:

- Los formados por depósitos de las arenas del Bolsón de Hueco
- Los que se forman por los depósitos de las arenas del Río Bravo

Las características de estos acuíferos pueden resumirse de la siguiente forma: están constituidos por capas de arena de tamaño variable, separadas parcialmente por lentes de arcilla. Debido a su origen, y aun cuando no puede considerarse que existan estratos confinantes entre las distintas capas acuíferas, algunas de ellas fueron antiguos lechos de lagos y lagunas, que almacenan aguas muy mineralizadas. La extensión superficial de estos acuíferos, cuya relación entre materiales impermeables, permeables e aproximadamente de 1:1, abarca el área de las grandes planicies o bolsones. Debajo de los rellenos aluviales del valle, el espesor de los depósitos es cuando menos de 500 m. Las características geohidrológicas de los acuíferos formados por gravas y arenas depositadas por el Río Bravo, son muy distintas a las mencionadas anteriormente. pues éstas presentan, en general, mayor permeabilidad y porosidad que las del bolsón, y se estima que en ellas la circulación del agua es más activa. La recarga de estos acuíferos proviene casi totalmente de la infiltración directa de los escurrimientos del río y de los riegos agrícolas, por lo que su calidad es inferior a la obtenida de los depósitos del bolsón, el cual se usa en el abastecimiento de agua potable de Ciudad. Juárez.

Ciudad Juárez, Chih., no cuenta con aguas superficiales y en sus proximidades no existe presa alguna, ríos o lagos que puedan servir a la ciudad para disponer de agua potable mediante tratamientos adecuados. La única posibilidad es la de potabilizar el agua que proporciona EE.UU., según el tratado de 1906, en donde la entrega máxima es de 74 millones de m³, volumen sujeto al que almacene la Presa del Elefante, por lo que existen años en que no se hace completa esta entrega. La ciudad cuenta con 212 pozos para el abastecimiento de agua potable, estando en

operación 184 aproximadamente. Todos estos pozos se encuentran perforados en el área correspondiente a Ciudad Juárez en el Bolsón del Hueco, y además cuenta con 23 pozos perforados en el Bolsón de la Mesilla que producen 24´ 000, 000 m³ por año, iniciando su operación a partir del 27 de mayo del 2010.

Metodología

Se hizo acopio de datos de diferentes instituciones públicas y privadas, para describir la situación de la administración del agua en el municipio de Juárez.

Se elaboró una base de datos históricos bajo los siguientes conceptos:

- a) Precipitación del periodo 1879 2013
- b) Temperaturas del periodo 1949 2013 (incompleto de 1966 1972)
- c) Volúmenes acumulados y extraídos del Bolsón del Hueco y del Bolsón de la Mesilla
- d) Tomas de agua potable de 1958 2013
- e) Gráfica de los volúmenes almacenados de la Presa de El Elefante de 1915 2010
- f) Volúmenes entregados por EE. UU., a México, según el tratado de 1906

Se tabularon los datos por los conceptos mencionados.

Resultados

Precipitación

Según los datos de la tabla 1, correspondiente al periodo 1879-2013, se observa una precipitación media de 219 mm/anual, donde se tienen ciclos de lluvia considerables de 431 mm/año. Lo

anterior, eventualmente ocasiona fuertes inundaciones en la ciudad. En los ciclos de muy baja precipitación, se presentan sequías prolongadas (Apéndice. Tabla 1).

Temperatura

Al analizar los datos de las temperaturas del periodo de 1942 a 2012, en cuanto a media anual, máxima media anual y mínima media anual, se observa que:

- Los datos de T (temperatura media anual), varían de 16.3 a 19.9° C
- Los datos de TM (temperatura máxima anual) varían de 24.4 a 28.3° C en el mismo periodo.
- Los datos de Tm (temperatura mínima anual), varían de 7.3 a 12.4° C en el mismo periodo.

Con relación a los datos de temperatura se observa que las variaciones son más notables en las temperaturas mínimas. En las temperaturas máximas las temperaturas no son tan variables en el tiempo (Apéndice. Tabla 2).

Volúmenes acumulados y extraídos del Bolsón del Hueco

El sistema de captación de Ciudad Juárez está integrado por 212 pozos distribuidos en toda el área urbana, incluyendo 23 pozos del acuífero de Conejos Médanos (Bolsón de Mesilla).

Dichos pozos produjeron durante 2015, un volumen de 163´ 928, 369 m³ del Bolsón del Hueco y 20´ 153, 225 m³, del Bolsón de la Mesilla.

La demanda máxima de verano ocurrida en junio del 2015, fue de 6,546 m³/s, y un gasto medio de 5,850 m³/s. Debido a las limitaciones del agua del Tratado de 1906, y la desaparición de las así como acequias de riego, intercambio de las tierras de riego a zonas urbanas, el Río Bravo ha disminuido su cauce y únicamente circula agua por la Acequia Madre, lo que disminuye las recargas naturales al acuífero, del que se abastece la ciudad. Por lo anterior. únicamente se dispone de aguas

subterráneas extraídas del Bolsón del Hueco (Oficialmente CONAGUA lo denomina acuífero del Valle de Juárez, y al de Conejos-Médanos, Bolsón de Mesilla).

En el área urbana de Ciudad Juárez desde 1960 a 2015, los acuíferos del Bolsón del Hueco y de la Mesilla se han sobreexplotado; inicialmente, se encontraron datos de monitoreo de extracciones de 1926 hasta 1957. La Junta Municipal de Agua y Saneamiento (JMAS) inició el monitoreo desde 1958 hasta la fecha (2015), para un acumulado de 5' 631, 506, 457 millones de m³, ocasionando que el nivel estático de los pozos se hayan abatido aproximadamente 80 m, en la parte baja de la ciudad y 90 m, en la parte alta. En el acuífero del Bolsón de la Mesilla, desde el 27 de mayo del 2010, que se inició su monitoreo, la extracción ha sido de 120'

399, 546 m³, con un abatimiento de 1.20 m al año.

Debido a que la captación de los abastecimientos son fuentes subterráneas, su contaminación es ocasionada por el mal manejo del agua. La JMAS aplica un tratamiento a base de gas de cloro en cada

uno de los pozos, siendo hasta la fecha el más utilizado en todos los sistemas por ser el más económico (Apéndice. Tabla 3 y Tabla 4).

Conclusiones y recomendaciones

Con relación a las aguas subterráneas, el acuífero del Bolsón de Hueco carece de sustentabilidad como lo prueban los abatimientos de los niveles estáticos que se han detectado de 1962-2015. La extracción de volúmenes de agua se incrementa cada año. La extracción consume más energía eléctrica (KW/m³) por año. Los parámetros de calidad, que según la norma debe cumplir el agua potable tomar, se deteriora para anualmente por lo que el consumo de insumos químicos es más costosos. El volumen extraído de 5631´ 506, 457 m³, explica la tendencia a la insustentabilidad del acuífero. Las tomas domiciliarias muestran que a partir de 1960 a la fecha, estas tienen un crecimiento logarítmico, únicamente se ha frenado en los últimos años por los problemas tres de inseguridad pública.

En este tema se presentan las siguientes recomendaciones: aislar paredes y techos de las viviendas; exigir en los reglamentos de construcción el requisito de que todas las viviendas sean

aisladas; que las tuberías instaladas en las viviendas sean de calidad adecuada para el soporte de las temperaturas mínimas; exigir que los herrajes se fabriquen bajo ciertas normas de calidad en llaves y sanitarios; que la calidad del gas que consumen los calefactores estén bajo las normas adecuadas V evitar contaminación del ambiente en verano; captar las aguas pluviales mediante estructuras técnicamente diseñadas para almacenamiento y reinyectar dicha agua mediante reinyección: pozos de incrementar políticas del consumo del agua para bajar la dotación por habitante; resolver la situación de escasez con plantas de tratamiento puntuales o plantas múltiples que involucren a varios pozos; tratar las aguas residuales y reinvectarlas al subsuelo y utilizar estas aguas para usos industriales, riego de jardínes, o áreas de construcción donde pueda utilizarse esta agua; analizar las entregas y, de acuerdo a ellas, diseñar una planta modular para su potabilización.

Se han mandado al Valle de Juárez 375′ 872, 000 m³ de aguas residuales que en lo futuro se tendrán que tratar al nivel adecuado para que sean recicladas y se usen para fines industriales y/o comerciales o reinyectarlas al acuífero para evitar la sobre explotación del mismo.

Con relación al Valle de Juárez se formulan las siguientes recomendaciones:

hacer estudios de localización de fuentes de abastecimiento sin importar la calidad del agua y mejorarlas mediante plantas de tratamiento; reinyectar aguas pluviales y residuales tratadas; establecer industrias con bajo consumo de agua en lugares que puedan disponer de las aguas recicladas para su uso; rotar los cultivos y métodos de riego que sean redituables para un menor consumo de agua.

Apéndice

AÑO	Pulgadas	AÑO	Pulgadas	AÑO	Pulgadas	AÑO	Pulgadas
1879	6.8	1913	7.09	1947	7.12	1981	12.63
1880	15.37	1914	17.02	1948	5.7	1982	10.97
1881	18.17	1915	10.26	1949	8.76	1983	7.99
1882	8.27	1916	7.77	1950	6.75	1984	16.17
1883	12.92	1917	6.49	1951	6.47	1985	8.16
1884	18.29	1918	8.21	1952	7.97	1986	12.17
1885	7.31	1919	9.87	1953	4.42	1987	10.94
1886	8.06	1920	6.21	1954	6.39	1988	11.06
1887	6.76	1921	6.92	1955	6.7	1989	7.26
1888	9.79	1922	4.3	1956	5.44	1990	12.85
1889	7.1	1923	8.13	1957	11.2	1991	12.38
1890	8.49	1924	7.28	1958	17.19	1992	11.4
1891	2.22	1925	6.51	1959	4.99	1993	9.63
1892	5.32	1926	11.73	1960	9.12	1994	5.48
1893	10.88	1927	6.25	1961	7.69	1995	8.06
1894	4.24	1928	8.21	1962	8.28	1996	8.39
1895	10.2	1929	9.29	1963	4.92	1997	9.63
1896	9.79	1930	6.09	1964	5.35	1998	6.77
1897	12.41	1931	10.79	1965	5.41	1999	8.16
1898	6.16	1932	10.94	1966	9.24	2000	7.41
1899	7.3	1933	5.93	1967	5.72	2001	4.29
1900	7.95	1934	2.73	1968	12.02	2002	6.89
1901	8.68	1935	5.65	1969	4.34	2003	4.21
1902	10.15	1936	9.93	1970	6.06	2004	12.09
1903	11.63	1937	6.23	1971	7.24	2005	12.87
1904	11.3	1938	8.3	1972	9	2006	17.51
1905	17.8	1939	5.91	1973	7.53	2007	10.12
1906	14.99	1940	7.76	1974	13.95	2008	9.86
1907	8.41	1941	15.65	1975	6.21	2009	8.68
1908	6.94	1942	10.76	1976	10.14	2010	6.67
1909	4.33	1943	7.02	1977	5.5	2011	5.27
1910	4.03	1944	9.08	1978	12.57	2012	6.05
1911	10.88	1945	6.74	1979	5.84	2013	0.71
1912	10.14	1946	8.22	1980	7.31		

Tabla 1. Precipitación pluvial en Ciudad Juárez durante el período 1879 al 2013

Año	T	TM	Tm	Año	T	TM	Tm
	-	-	-	1980	18.2	27.1	9.1
1942	17.9	25.3	11.3	1981	18.5	27.2	9.7
1943	18.6	26	11.7	1982	18.2	26.7	9.2
1944	17.7	25	11.2	1983	17.6	26	8.8
1945	-	-	-	1984	17.6	25.9	8.8
1946	-	-	-	1985	17.1	25.9	8.2
1947	-	-	-	1986	17.5	25.7	9.1
1948	-	-	-	1987	16.6	24.9	8.9
1949	17.7	25.1	10.8	1988	17.1	25.4	9.4
1950	19.1	26.5	12.2	1989	18.2	26.6	10.2
1951	18.6	25.7	11.9	1990	17.9	25.8	10.8
1952	17.9	25.3	11.4	1991	17.5	25.1	10.2
1953	18.4	25.8	11.7	1992	18.4	26.5	9.7
1954	19	26.3	12.4	1993	19	27.1	10.7
1955	18	25.1	11.6	1994	19.9	28.3	11.1
1956	18.4	25.7	11.6	1995	19.1	27.2	10.5
1957	18.3	25.1	12.4	1996	19.1	26.6	11.4
1958	18	25	12.1	1997	17.9	25.3	11.2
1959	18.7	26	12	1998	18.6	26.1	11.1
1960	17.9	25.2	11.4	1999	18.5	26.5	10.7
1961	17.5	25.1	10.6	2000	19	27	10.8
1962	18	25.3	11.2	2001	18.7	26.6	10.5
1963	18.2	25.6	11.2	2002	ı	1	ı
1964	17.4	24.7	10.5	2003	19.2	27.3	10.9
1965	18	25.3	10.9	2004	18.1	25.6	10.6
1966	17.4	24.4	10.8	2005	ı	1	ı
1972	18	25.1	11.4	2006	19.1	27	11.5
1973	16.8	26	7.9	2007	18.6	26.7	11.1
1974	17.2	26	8.4	2008	18.6	26.8	10.6
1975	17.2	26.8	7.5	2009	19.3	27.4	11.5
1976	16.3	25.5	7.3	2010	19	27.1	11.3
1977	18	26.8	8.7	2011	19.7	27.7	11.5
1978	18.3	26.5	10.2	2012	19.9	27.9	11.6
1979	17.2	26.4	7.7	2013	-	-	-

Tabla 2. Temperaturas media, máxima y mínima anual durante el período 1942 al 2013

	VOLUMEN ACUMULADO		VOLUMEN ACUMULADO		VOLUMEN ACUMULADO
AÑO	(m³)	AÑO	(m³)	AÑO	(m³)
1926	1,315,655	1957	197,575,942	1988	1,690,790,138
1927	4,519,907	1958	215,762,833	1989	1,806,127,792
1928	7,551,696	1959	236,429,508	1990	1,925,958,818
1929	10,395,208	1960	256,935,113	1991	2,046,558,252
1930	13,058,345	1961	278,499,954	1992	2,173,660,457
1931	15,541,112	1962	299,469,842	1993	2,304,046,428
1932	17,849,814	1963	318,399,721	1994	2,439,157,923
1933	19,971,836	1964	339,318,246	1995	2,582,307,923
1934	23,194,711	1965	360,066,060	1996	2,723,406,095
1935	27,164,419	1966	380,794,219	1997	2,862,652,238
1936	31,134,229	1967	403,101,964	1998	3,008,102,319
1937	35,127,506	1968	427,410,074	1999	3,158,094,956
1938	39,112,574	1969	454,729,579	2000	3,313,725,980
1939	43,042,312	1970	484,311,084	2001	3,467,584,219
1940	47,154,926	1971	520,661,838	2002	3,621,370,120
1941	51,636,366	1972	560,637,116	2003	3,775,732,853
1942	56,549,020	1973	604,588,967	2004	3,922,805,953
1943	62,013,178	1974	650,585,347	2005	4,073,679,553
1944	67,904,913	1975	699,337,120	2006	4,229,905,773
1945	73,446,293	1976	751,274,390	2007	4,389,263,547
1946	78,663,866	1977	806,908,235	2008	4,553,179,735
1947	83,529,143	1978	867,557,750	2009	4,714,439,091
1948	90,411,711	1979	933,595,273	2010	4,876,093,174
1949	97,481,572	1980	1,002,425,218	2011	5,047,555,932
1950	104,841,039	1981	1,074,840,455	2012	5,216,695,680
1951	111,860,075	1982	1,151,888,634	2013	5,390,424,576
1952	123,211,180	1983	1,233,133,341	2014	5,567,893,467
1953	134,562,789	1984	1,315,546,546	2015	5,690,708,270
1954	145,926,479	1985	1,399,473,138	2016	5,801,720,752
1955	162,433,780	1986	1,488,463,164		
1956	180,134,711	1987	1,585,851,325		

Tabla 3. Volumen acumulado durante el período 1926 al 2015

AÑO	VOLUMEN EXTRAIDO m ³	AÑO	VOLUMEN EXTRAIDO m³	AÑO	VOLUMEN EXTRAIDO m ³
1926	1,315,655	1957	17,441,231	1988	104,938,813
1927	3,204,252	1958	18,186,891	1989	
1928		1959		1990	115,337,654
	3,031,789		20,666,675		119,831,026
1929	2,843,512	1960	20,505,605	1991	120,599,434
1930	2,663,137	1961	21,564,841	1992	127,102,205
1931	2,482,767	1962	20,969,888	1993	130,385,971
1932	2,308,702	1963	18,929,879	1994	135,111,495
1933	2,122,022	1964	20,918,525	1995	143,150,000
1934	3,222,875	1965	20,747,814	1996	141,098,172
1935	3,969,708	1966	20,728,159	1997	139,246,143
1936	3,969,810	1967	22,307,745	1998	145,450,081
1937	3,993,277	1968	24,308,110	1999	149,992,637
1938	3,985,068	1969	27,319,505	2000	155,631,024
1939	3,929,738	1970	29,581,505	2001	153,858,239
1940	4,112,614	1971	36,350,754	2002	153,785,901
1941	4,481,440	1972	39,975,278	2003	154,362,733
1942	4,912,654	1973	43,951,851	2004	147,073,100
1943	5,464,158	1974	45,996,380	2005	150,873,600
1944	5,891,735	1975	48,751,773	2006	156,226,220
1945	5,541,380	1976	51,937,270	2007	159,357,774
1946	5,217,573	1977	55,633,845	2008	163,916,188
1947	4,865,277	1978	60,649,515	2009	161,259,356
1948	6,882,568	1979	66,037,523	2010	161,654,083
1949	7,069,861	1980	68,829,945	2011	171,462,758
1950	7,359,467	1981	72,415,237	2012	169,139,748
1951	7,019,036	1982	77,048,179	2013	173,728,896
1952	11,351,105	1983	81,244,707	2014	177,468,891
1953	11,351,609	1984	82,413,205	2015	184,501,318
1954	11,363,690	1985	83,926,592	2016	111,012,482
1955	16,507,301	1986	88,990,026		_
1956	17,700,931	1987	97,388,161		

Tabla 4. Volumen de agua extraído durante el período de 1926 a 2015